Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 21756, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294216

RESUMO

The existing numerical models generally employ sulfate instead of nitrate to simulate the scattering properties of aerosol, the corresponding radiative deviation needs to be evaluated urgently. Moreover, the sophisticated mixture of nitrate, sulfate, and mineral particles is formed through a series of chemical reactions, which makes it extremely challenging to understand the scattering properties of atmospheric aerosols. In this study, the core-shell ellipsoid model is used to flexibly characterize the morphology and mixed structures of nitrate, sulfate, and mineral in the fine mode radius range. The T-matrix method is used to compare the scattering properties of nitrate, sulfate, and mineral within different morphologies and mixing states at four selected wavelengths (0.44, 0.675, 0.87, and 1.02 µm). The results show that the difference of mean extinction efficiency factor (< Qe >) and mean single scattering albedo (< ω >) between nitrate and sulfate-containing particles is very small, mainly within 2%. However, their mean scattering phase function P11(θ) is quite different. The difference of forward scattering phase function P11(0) is up to 7%, while the difference of backward scattering phase function P11(π) can reach more than 25%. Overall, particle morphology and incident wavelength regulate the value of the optical parameters, whereas the coatings on the mineral play a more important role in drifting, but the differences between nitrate- and sulfate-containing particles are still very pronounced.

2.
Int J Biol Macromol ; 268(Pt 1): 131621, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631588

RESUMO

In this study, the fibrous structure formation mechanism of soybean protein during high moisture extrusion processing was investigated using a dead-stop operation, and based on the interaction between soybean protein concentrate (SPC) and L-cysteine (CYS). The thermal properties, SDS-PAGE and particle size distribution of the samples from different extrusion zones were investigated. It was revealed that the addition of a moderate amount of CYS (0.1 %) promoted the fibrous structure formation in the SPC extrudates and optimised the textural properties of the SPC extrudates. In the extruder barrel, addition of CYS (0.1 %) promoted protein depolymerisation and unfolding in the mixing and cooking zones, and facilitated protein aggregation in the die and cooling zones. Protein solubility and raman spectroscopy revealed that disulfide bonds were principally responsible for fibrous structure formation; favoured when the intermolecular disulfide bonds (t-g-t mode) was increased. Finally, the transformation of protein conformation was revealed by secondary structure and surface hydrophobicity, which confirmed that the effect of CYS on protein conformation mainly occurred in the cooling zone. This study provides a theoretical basis for the application of CYS to regulate the fibrous structure of meat analogues.


Assuntos
Cisteína , Proteínas de Soja , Proteínas de Soja/química , Cisteína/química , Interações Hidrofóbicas e Hidrofílicas , Solubilidade , Glycine max/química , Água/química , Conformação Proteica , Tamanho da Partícula , Estrutura Secundária de Proteína
3.
J Sci Food Agric ; 103(13): 6180-6189, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37139635

RESUMO

BACKGROUND: Plant protein is widely used in the study of animal protein substitutes and healthy sustainable products. The gel properties are crucial for the production of plant protein foods. Therefore, the present study investigated the use of soybean oil to modulate the gel properties of soybean protein isolation-wheat gluten composite with or without CaCl2 . RESULTS: Oil droplets filled protein network pores under the addition of soybean oil (1-2%). This resulted in an enhanced gel hardness and water holding capacity. Further addition of soybean oil (3-4%), oil droplets and some protein-oil compounds increased the distance between the protein molecule chain. The results of Fourier transform infrared spectroscopy and intermolecular interaction also showed that the disulfide bond and ß-sheet ratio decreased in the gel system, which damaged the overall structure of the gel network. Compared with the addition of 0 m CaCl2 , salt ion reduced the electrostatic repulsion between proteins, and local protein cross-linking was more intense at 0.005 m CaCl2 concentration. In the present study, structural properties and rheological analysis showed that the overall strength of the gel was weakened after the addition of CaCl2 . CONCLUSION: The presence of appropriate amount of soybean oil can fill the gel pores and improve the texture properties and network structure of soy protein isolate-wheat gluten (SPI-WG) composite gel. Excessive soybean oil may hinder protein-protein interaction and adversely affect protein gel. In addition, the presence or absence of CaCl2 significantly affected the gelling properties of SPI-WG composite protein gels. © 2023 Society of Chemical Industry.


Assuntos
Óleo de Soja , Proteínas de Soja , Proteínas de Soja/química , Triticum/química , Cloreto de Cálcio/química , Glutens/química , Géis/química
4.
Foods ; 12(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37174428

RESUMO

The effect and mechanism of soybean insoluble dietary fiber (SIDF) (0~4%) and CaCl2 (0~0.005 M) on the properties of soybean protein isolate (SPI)-wheat gluten (WG) composite gel were studied. It was revealed that the addition of insoluble dietary fiber (1~2%) increased the strength and water-holding capacity (WHC) of the composite gel (p < 0.05) and enhanced the gel network structure compared with the control. WHC and LF-NMR showed that the water-binding ability of the gel system with only 2% SIDF was the strongest. The addition of excessive SIDF increased the distance between protein molecules, impeded the cross-linking of protein, and formed a three-dimensional network with low gel strength. The infrared spectrum and intermolecular force indicated that the interaction between SIDF and SPI were mainly physical, and the hydrophobic interaction and disulfide bond were the main forces in the gel system. The addition of CaCl2 can increase the critical content of gel texture destruction caused by SIDF, and the gel strength attained its peak at 3% SIDF, indicating that appropriate CaCl2 improved gel structure weakening caused by excessive SIDF. This study provides insights in enhancing the production of multi-component composite gel systems.

5.
J Sci Food Agric ; 103(12): 5992-6004, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37115040

RESUMO

BACKGROUND: Due to the extrusion black box effect, polysaccharides determine the formation of meat-like fibrous structures by modulating the flow behaviour and structural changes of plant proteins under high-moisture extrusion conditions. However, there is limited knowledge on the mechanism of resolution. This study simulated the rheological properties of soy protein-wheat protein under 57% moisture conditions with addition of 4% sodium alginate (SA), 2% xanthan gum (XG), and 2% maltodextrin (MD). The effect of these polysaccharides on the aggregation behaviour and conformation of raw protein during high-moisture extrusion was investigated. RESULTS: It was revealed that the three polysaccharides were effective in increasing the interaction between proteins and between proteins and water. Among them, 4% SA elicited a significantly stronger storage modulus (gelation behaviour) compared to the control. Analysis of different zones of extrudates by protein electrophoresis, particle size, and turbidity showed that SA-4% was able to form more high molecular protein aggregates (> 245 kDa) and promoted crosslinking of low molecular subunits (< 48 kDa), resulting in moderately sized protein aggregated particles. Fluorescence and ultraviolet spectra showed the transformation of protein tertiary structures in different extrusion zones, confirming that the key extrusion zone for protein conformational transformation by polysaccharides is the die-cooling zone. Furthermore, stretching of polypeptide chains and accelerated protein rearrangement facilitated the formation of more fibrillar structures. CONCLUSION: Theoretical support for polysaccharide modulation of plant protein quality in high moisture extruded products is provided by this study. © 2023 Society of Chemical Industry.


Assuntos
Agregados Proteicos , Proteínas de Soja , Proteínas de Soja/química , Triticum/química , Proteínas de Plantas/química , Carne
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA