Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 12(11)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158226

RESUMO

Owing to the wide spectrum of excitation wavelengths of up-conversion nanoparticles (UCNPs) by precisely regulating the percentage of doping elements, UCNPs have been emerging as bioimaging agents. The key drawback of UCNPs is their poor dispersibility in aqueous solution and it is hard to introduce the chemical versatility of function groups. In our study, we present a robust and feasible UCNP modification approach by introducing hyperbranched polyglycerols (hbPGs) as a coating layer. When grafted by hbPGs, the solubility and biocompatibility of UCNPs are significantly improved. Moreover, we also systematically investigated and optimized the chemical modification approach of amino acids or green fluorescence protein (GFP), respectively, grafting onto hbPGs and hbPGs-g-UCNP by oxidizing the vicinal diol to be an aldehyde group, which reacts more feasibly with amino-containing functional molecules. Then, we investigated the drug-encapsulating properties of hbPGs-Arg with DOX and cell imaging of GFP-grafted hbPGs-g-UCNP, respectively. The excellent cell imaging in tumor cells indicated that hbPG-modification of UCNPs displayed potential for applications in drug delivery and disease diagnosis.

2.
Colloids Surf B Biointerfaces ; 190: 110968, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32193073

RESUMO

Owing to the excellent biocompatibility, hyperbranched polyglycerols (hbPGs) are one of the most promising polymers and widely employed in drug delivery. Presented as an excellent bioinert coating material, hbPGs can significantly improve the biosafety of biomedical nanomaterials. However, it is still unclear what specific properties of hbPGs are the key effectors to bioinertness. Here, atomic force microscopy was employed to test the Young's modulus and adhesion of hbPGs, spin-coated onto mica substrate. High Young's modulus indicated that the hbPGs cannot be further compressed and low adhesion implied that it is not easy to form hbPGs aggregators. This could owe to the intramolecular hydrogen bond. Morphology characterization of hbPGs self-assembled monolayer onto Si(100) substrate, confirmed the lower adhesion among different hbPGs and indicated their biofouling properties. Further confocal laser microscopy of cell membrane modified with alkyl chain (C18)-modified hbPGs and hbPGs-NH2, confirmed that the antifouling properties of hbPGs are determined by terminal glycerol units. Our findings demonstrated that only hbPGs with entire terminal surface can be used as perspective cell membrane modification skeleton.


Assuntos
Materiais Biocompatíveis/farmacologia , Engenharia Celular , Glicerol/farmacologia , Nanopartículas/química , Polímeros/farmacologia , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Glicerol/química , Humanos , Tamanho da Partícula , Polímeros/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA