Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39124260

RESUMO

Salt stress caused by high concentrations of Na+ and Cl- in soil is one of the most important abiotic stresses in agricultural production, which seriously affects grain yield. The alleviation of salt stress through the application of exogenous substances is important for grain production. Melatonin (MT, N-acetyl-5-methoxytryptamine) is an indole-like small molecule that can effectively alleviate the damage caused by adversity stress on crops. Current studies have mainly focused on the effects of MT on the physiology and biochemistry of crops at the seedling stage, with fewer studies on the gene regulatory mechanisms of crops at the germination stage. The aim of this study was to explain the mechanism of MT-induced salt tolerance at physiological, biochemical, and molecular levels and to provide a theoretical basis for the resolution of MT-mediated regulatory mechanisms of plant adaptation to salt stress. In this study, we investigated the germination, physiology, and transcript levels of maize seeds, analyzed the relevant differentially expressed genes (DEGs), and examined salt tolerance-related pathways. The results showed that MT could increase the seed germination rate by 14.28-19.04%, improve seed antioxidant enzyme activities (average increase of 11.61%), and reduce reactive oxygen species accumulation and membrane oxidative damage. In addition, MT was involved in regulating the changes of endogenous hormones during the germination of maize seeds under salt stress. Transcriptome results showed that MT affected the activity of antioxidant enzymes, response to stress, and seed germination-related genes in maize seeds under salt stress and regulated the expression of genes related to starch and sucrose metabolism and phytohormone signal transduction pathways. Taken together, the results indicate that exogenous MT can affect the expression of stress response-related genes in salt-stressed maize seeds, enhance the antioxidant capacity of the seeds, reduce the damage induced by salt stress, and thus promote the germination of maize seeds under salt stress. The results provide a theoretical basis for the MT-mediated regulatory mechanism of plant adaptation to salt stress and screen potential candidate genes for molecular breeding of salt-tolerant maize.

2.
Environ Pollut ; 266(Pt 1): 115075, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32622217

RESUMO

Recent increased use of agricultural machines elevated the atmospheric pollutant emissions in the Yangtze River Delta (YRD) region in eastern China. Given the potentially large environmental and health impacts in busy seasons with enhanced machinery usage, it is important to accurately estimate the magnitude, spatial and temporal distributions of the emissions. We developed a novel method to estimate the real-world in-use agricultural machinery emissions, by combining satellite data, land and soil information, and in-house investigation. The machinery usage was determined based on the spatial distribution, growing and rotation pattern of the crops. The varied requirement of machinery power by heterogeneous soil texture, which was ignored in the previous studies, was considered in our methodology. The spatiotemporal pattern of machinery usage was determined based on the explored quantitative correlation between the local agricultural activity duration and the geographic location of the activity. A "grid-based" (30 × 30 m) inventory with daily emissions was then obtained, achieving significant improvement on spatial and temporal resolution. It substantially diminished the bias of previous inventories based on the machinery population or power installation census data. The emissions of NOX, PM2.5, CO and THC were estimated at 36300, 2000, 36900 and 8430 metric tons in YRD, with the majority contribution from Anhui and Jiangsu. Ten cities locating in northern and central Anhui and Jiangsu contributed the largest machinery emissions, accounting for 60% of the total emissions in YRD. Harvesting was found to have the largest emissions, followed by tilling and planting. Regarding the crops, the emissions from wheat and rice related machinery usage were the largest. In the busy seasons (spring and autumn), larger daily NOX and PM2.5 emissions were found from machinery than on-road vehicles in 42% of counties in Anhui and Jiangsu, highlighting the necessity of careful strategy making on controls of priority emission source.


Assuntos
Poluentes Atmosféricos/análise , China , Cidades , Monitoramento Ambiental , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA