Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neural Netw ; 145: 209-220, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34768091

RESUMO

Although significant progress has been made in synthesizing high-quality and visually realistic face images by unconditional Generative Adversarial Networks (GANs), there is still a lack of control over the generation process in order to achieve semantic face editing. In this paper, we propose a novel learning framework, called GuidedStyle, to achieve semantic face editing on pretrained StyleGAN by guiding the image generation process with a knowledge network. Furthermore, we allow an attention mechanism in StyleGAN generator to adaptively select a single layer for style manipulation. As a result, our method is able to perform disentangled and controllable edits along various attributes, including smiling, eyeglasses, gender, mustache, hair color and attractive. Both qualitative and quantitative results demonstrate the superiority of our method over other competing methods for semantic face editing. Moreover, we show that our model can be also applied to different types of real and artistic face editing, demonstrating strong generalization ability.


Assuntos
Redes Neurais de Computação , Semântica , Processamento de Imagem Assistida por Computador
2.
Comput Methods Programs Biomed ; 203: 106023, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33744751

RESUMO

BACKGROUND AND OBJECTIVE: Alzheimer's Disease (AD) is associated with neuronal damage and decrease. Micro-Optical Sectioning Tomography (MOST) provides an approach to acquire high-resolution images for neuron analysis in the whole-brain. Application of this technique to AD mouse brain enables us to investigate neuron changes during the progression of AD pathology. However, how to deal with the huge amount of data becomes the bottleneck. METHODS: Using MOST technology, we acquired 3D whole-brain images of six AD mice, and sampled the imaging data of four regions in each mouse brain for AD progression analysis. To count the number of neurons, we proposed a deep learning based method by detecting neuronal soma in the neuronal images. In our method, the neuronal images were first cut into small cubes, then a Convolutional Neural Network (CNN) classifier was designed to detect the neuronal soma by classifying the cubes into three categories, "soma", "fiber", and "background". RESULTS: Compared with the manual method and currently available NeuroGPS software, our method demonstrates faster speed and higher accuracy in identifying neurons from the MOST images. By applying our method to various brain regions of 6-month-old and 12-month-old AD mice, we found that the amount of neurons in three brain regions (lateral entorhinal cortex, medial entorhinal cortex, and presubiculum) decreased slightly with the increase of age, which is consistent with the experimental results previously reported. CONCLUSION: This paper provides a new method to automatically handle the huge amounts of data and accurately identify neuronal soma from the MOST images. It also provides the potential possibility to construct a whole-brain neuron projection to reveal the impact of AD pathology on mouse brain.


Assuntos
Doença de Alzheimer , Aprendizado Profundo , Doença de Alzheimer/diagnóstico por imagem , Animais , Encéfalo/diagnóstico por imagem , Camundongos , Redes Neurais de Computação , Neurônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA