Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Radiol ; 177: 111571, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38925043

RESUMO

BACKGROUND AND OBJECTIVES: Collateral status is a pivotal determinant of clinical outcomes in acute ischemic stroke (AIS); however, its evaluation can be challenging. We investigated the predictive value of CT perfusion (CTP) derived time and density alterations versus CTP for collateral status prediction in AIS. METHODS: Consecutive patients with anterior circulation occlusion within 24 h were retrospectively included. Time-density curves of the CTP specified ischemic core, penumbra, and the corresponding contralateral unaffected brain were obtained. The collateral status was dichotomised into robust (4-5 scores) and poor (0-3 scores) using multiphase collateral scoring, as described by Menon et al.. Receiver operating characteristic curves and multivariable regression analysis were performed to assess the predictive ability of CTP-designated tissue time and density alterations, CTP for robust collaterals, and favourable outcomes (mRS score of 0-2 at 90 days). RESULTS: One-hundred patients (median age, 68 years; interquartile range, 57-80 years; 61 men) were included. A smaller ischemic core, shorter peak time delay, lower peak density decrease, lower cerebral blood volume ratio, and cerebral blood flow ratio in the CTP specified ischemic core were significantly associated with robust collaterals (PFDR ≤ 0.004). The peak time delay demonstrated the highest diagnostic value (AUC, 0.74; P < 0.001) with 66.7 % sensitivity and 73.7 % specificity. Furthermore, the peak time delay of less than 8.5 s was an independent predictor of robust collaterals and favourable clinical outcomes. CONCLUSIONS: Robust collateral status was significantly associated with the peak time delay in the ischemic core. It is a promising image marker for predicting collateral status and functional outcomes in AIS.

2.
Fish Shellfish Immunol ; 145: 109364, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199264

RESUMO

Micropterus salmoides rhabdovirus (MSRV) is one of the main pathogens of largemouth bass, leading to serious economic losses. The G protein, as the only envelope protein present on the surface of MSRV virion, contains immune-related antigenic determinants, thereby becoming the primary target for the design of MSRV vaccines. Here, we displayed the G protein on the surface of yeast cells (named EBY100/pYD1-G) and conducted a preliminary assessment of the protective efficacy of the recombinant yeast vaccine. Upon oral vaccination, a robust immune response was observed in systemic and mucosal tissue. Remarkably, following the MSRV challenge, the relative percent survival of EBY100/pYD1-G treated largemouth bass significantly increased to 66.7 %. In addition, oral administration inhibited viral replication and alleviated the pathological symptoms of MSRV-infected largemouth bass. These results suggest that EBY100/pYD1-G could be used as a potential oral vaccine against MSRV infection.


Assuntos
Bass , Doenças dos Peixes , Rhabdoviridae , Animais , Saccharomyces cerevisiae , Vacinação , Proteínas Fúngicas , Vacinas Sintéticas
3.
Huan Jing Ke Xue ; 44(10): 5657-5665, 2023 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-37827782

RESUMO

To understand the status of heavy metals in soils of typical industrial and mining towns and quantitatively analyze the potential sources, the contents of seven heavy metals (Cd, As, Pb, Cr, Cu, Ni, and Zn) in 150 surface soils in Xuanhua District, Zhangjiakou City, Hebei Province were collected and examined. The geoaccumulation index and potential ecological risk index methods were used to evaluate the heavy metal pollution status and potential ecological risk. Principal component analysis (PCA) and the positive matrix factorization (PMF) model were used to comprehensively analyze the pollution sources of seven heavy metals, and geostatistics was used to identify the high contribution areas of potential sources. The results revealed that:① the average values of heavy metals in the study area ranged from 0.23-103.34 mg·kg-1, among which the average contents of Cd, Pb, Cu, and Zn were higher than the soil background value of Hebei Province. ② The results of the geoaccumulation and potential ecological risk indices demonstrated that the degree of pollution of the seven heavy metals was in the following order:Cd>Pb>Cu>Zn>Ni>As>Cr, the content of Cd in 16% sites was above a moderate pollution level, and the potential ecological risk of heavy metals in more than 95% sites was at a light risk level. ③ The main sources of accumulation of the seven heavy metals in the study area were combined sources of industry and traffic, natural sources, and agricultural sources, with their contribution rates of 33.1%, 48.7%, and 18.2%, respectively. Among them, Cd, Pb, Cu, and Zn were primarily affected by the combined sources of industry and transportation; Cr, Ni, and As were mainly affected by natural sources, whereas Cd and some As were affected by agricultural sources. The organic combination of PCA, PMF model, and geostatistical methods confirmed the results of each analysis, which increased the reliability of the analytical results of heavy metal sources.

4.
J Virol ; 97(10): e0071423, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37735152

RESUMO

IMPORTANCE: Although Micropterus salmoides rhabdovirus (MSRV) causes serious fish epidemics worldwide, the detailed mechanism of MSRV entry into host cells remains unknown. Here, we comprehensively investigated the mechanism of MSRV entry into epithelioma papulosum cyprinid (EPC) cells. This study demonstrated that MSRV enters EPC cells via a low pH, dynamin-dependent, microtubule-dependent, and clathrin-mediated endocytosis. Subsequently, MSRV transports from early endosomes to late endosomes and further into lysosomes in a microtubule-dependent manner. The characterization of MSRV entry will further advance the understanding of rhabdovirus cellular entry pathways and provide novel targets for antiviral drug against MSRV infection.


Assuntos
Bass , Rhabdoviridae , Animais , Rhabdoviridae/metabolismo , Bass/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Endocitose , Dinaminas/metabolismo , Microtúbulos/metabolismo , Clatrina/metabolismo , Concentração de Íons de Hidrogênio , Internalização do Vírus
6.
Plant Cell Environ ; 46(7): 2078-2096, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37128741

RESUMO

Gladiolus hybridus is one of the most popular flowers worldwide. However, its corm dormancy characteristic largely limits its off-season production. Long-term cold treatment (LT), which increases sugar content and reduces abscisic acid (ABA), is an efficient approach to accelerate corm dormancy release (CDR). Here, we identified a GhbZIP30-GhCCCH17 module that mediates the antagonism between sugars and ABA during CDR. We showed that sugars promoted CDR by reducing ABA levels in Gladiolus. Our data demonstrated that GhbZIP30 transcription factor directly binds the GhCCCH17 zinc finger promoter and activates its transcription, confirmed by yeast one-hybrid, dual-luciferase (Dual-LUC), chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) and electrophoretic mobility shift assay (EMSA). GhCCCH17 is a transcriptional activator, and its nuclear localisation is altered by surcose and cytokinin treatments. Both GhbZIP30 and GhCCCH17 positively respond to LT, sugars, and cytokinin treatments. Silencing GhbZIP30 or GhCCCH17 resulted in delayed CDR by regulating ABA metabolic genes, while their overexpression promoted CDR. Taken together, we propose that the GhbZIP30-GhCCCH17 module is involved in cold- and glucose-induced CDR by regulating ABA metabolic genes.


Assuntos
Ácido Abscísico , Dormência de Plantas , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Dormência de Plantas/genética , Fatores de Transcrição/metabolismo , Citocininas , Açúcares , Regulação da Expressão Gênica de Plantas
7.
J Hazard Mater ; 452: 131367, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37030226

RESUMO

Due to naturally high Ni or soil Ni contamination, high Ni concentrations are reported in rice, raising a need to reduce rice Ni exposure risk. Here, reduction in rice Ni concentration and Ni oral bioavailability with rice Fe biofortification and dietary Fe supplementation was assessed using rice cultivation and mouse bioassays. Results showed that for rice grown in a high geogenic Ni soil, increases in rice Fe concentration from ∼10.0 to ∼30.0 µg g-1 with foliar EDTA-FeNa application led to decreases in Ni concentration from ∼4.0 to ∼1.0 µg g-1 due to inhibited Ni transport from shoot to grains via down-regulated Fe transporters. When fed to mice, Fe-biofortified rice was significantly (p < 0.01) lower in Ni oral bioavailability (59.9 ± 11.9% vs. 77.8 ± 15.1%; 42.4 ± 9.81% vs. 70.4 ± 6.81%). Dietary amendment of exogenous Fe supplements to two Ni-contaminated rice samples at 10-40 µg Fe g-1 also significantly (p < 0.05) reduced Ni RBA from 91.7% to 61.0-69.5% and from 77.4% to 29.2-55.2% due to down-regulation of duodenal Fe transporter expression. Results suggest that the Fe-based strategies not only reduced rice Ni concentration but also lowered rice Ni oral bioavailability, playing dual roles in reducing rice-Ni exposure.


Assuntos
Oryza , Poluentes do Solo , Animais , Camundongos , Ferro/metabolismo , Biofortificação , Oryza/metabolismo , Disponibilidade Biológica , Solo , Poluentes do Solo/metabolismo
8.
Sci Total Environ ; 839: 156366, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35654181

RESUMO

To assess the health risk of nickel (Ni) in contaminated soils, studies rarely evaluated Ni bioavailability in the gastrointestinal (GI) tract, limiting the accurate regulation of contaminated sites. Here, for 15 soil samples contaminated by Ni-electroplating, Ni oral relative bioavailability (RBA, relative to NiSO4) was measured using a mouse urinary excretion bioassay. Nickel-RBA varied from 7.89% to 33.8% at an average of 19.1 ± 18.6%. The variation was not explained well by variation in soil properties including Ni speciation and co-contamination of other metals, which showed weak correlation with Ni-BRA (R2 < 0.36). In comparison, the Ni-RBA variation was explained well by the variation of soil-Ni solubility in simulated human gastric or gastrointestinal fluids, i.e., Ni bioaccessibility. Determined using the gastric (GP) and intestinal phases (IP) of solubility bioaccessibility research consortium (SBRC), physiologically based extraction test methods (PBET), and unified BARGE method (UBM), Ni bioaccessibility explained 54-71% variation of the Ni-RBA, suggesting that Ni oral bioavailability was predominantly controlled by Ni solubility in the GI tract. The results highlight the suitability of using simple, fast, and cost-effective bioaccessbility assays to predict site-specific Ni oral bioavailability.


Assuntos
Níquel , Poluentes do Solo , Bioensaio/métodos , Disponibilidade Biológica , Solo , Poluentes do Solo/análise
9.
J Hazard Mater ; 424(Pt A): 127373, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34879567

RESUMO

To test high cadmium (Cd) concentration may not be high in health risk when considering Cd bioavailability, we assessed variation of Cd relative bioavailability (RBA, relative to CdCl2) using a mouse assay for 14 vegetables of water spinach, amaranth, and pakchoi. Cadmium concentration varied from 0.13 ± 0.01-0.37 ± 0.00 µg g-1 fw. Cadmium-RBA also varied significantly from 22.9 ± 2.12-77.2 ± 4.46%, however, the variation was overall opposite to that of Cd concentration, as indicated by a strong negative correlation between Cd-RBA and Cd concentration (R2 = 0.43). Based on both Cd concentration and bioavailability, the identified high-Cd pakchoi variety resulted in significantly lower Cd intake than the high-Cd varieties of water spinach and amaranth (4.74 ± 0.05 vs. 10.1 ± 0.54 and 8.03 ± 0.04 µg kg-1 bw week-1) due to significantly lower Cd-RBA (22.9 ± 2.12 vs. 77.2 ± 4.46 and 51.3 ± 2.93%). The lower Cd-RBA in pakchoi was due to its significantly higher Ca and lower phytate concentrations, which facilitated the role of Ca in inhibiting intestinal Cd absorption. This was ascertained by observation of decreased Cd-RBA (90.5 ± 12.0% to 63.5 ± 5.53%) for a water spinach when elevating its Ca concentration by 30% with foliar Ca application. Our results suggest that to assess food Cd risk, both total Cd and Cd bioavailability should be considered.


Assuntos
Cádmio , Poluentes do Solo , Disponibilidade Biológica , Cádmio/análise , Cádmio/toxicidade , Cálcio , Ácido Fítico , Poluentes do Solo/análise , Verduras
10.
Ying Yong Sheng Tai Xue Bao ; 32(9): 3070-3078, 2021 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-34658191

RESUMO

Soil denitrifying enzyme activity (DEA) was measured by acetylene inhibition technique, along with exploration of factors influencing DEA in a bamboo forest riparian zone in the upper reaches of the Taihu Lake Basin during summer. Our aim was to provide important insights into the assessment of ecological functions of bamboo forest riparian zone on reducing nitrogen pollution in rivers. The results showed that the riparian soil DEA ranged from 6.32 to 23.22 µg N·kg-1·h-1, with a mean value of 14.65 µg N·kg-1·h-1. The vertical distribution (0-40 cm soil profile) of DEA was affected by several factors, such as soil organic carbon (SOC), total nitrogen (TN), nitrate nitrogen (NO3--N), soil water content, and activity of carbon and nitrogen hydrolase, which resulted in decreased DEA with increasing soil depth. The horizontal changes in DEA (at the same soil depth but at different distances from river) was mainly governed by the variation in SOC concentration. In this area, the concentration of soil dissolved organic carbon was relatively low, which might inhibit the soil DEA during summer.


Assuntos
Lagos , Solo , Carbono/análise , China , Florestas
11.
Huan Jing Ke Xue ; 42(6): 2826-2838, 2021 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-34032082

RESUMO

Inland waters are vital sinks for active carbon (C) and potential sources of greenhouse gas emissions. In this study, the characteristics of dissolved carbon dioxide (CO2) and methane (CH4) concentrations in the Nantiaoxi River system in the upper reaches of the Taihu Lake basin were observed between Jul. 2019 and Nov. 2019 (summer and autumn) using headspace equilibration-gas chromatography. Simultaneously, physical and chemical parameters were also determined to understand the factors influencing dissolved CO2 and CH4 concentrations. The results showed that the mean dissolved CO2 concentrations and saturation levels in water were (505.47±16.99) µg·L-1 and (256.31±8.32)%, respectively, and the corresponding values for CH4 were (1.88±0.09) µg·L-1 and (5218.74±264.30)%, respectively. The saturation levels of dissolved CO2 and CH4 at all observation points were greater than 100%, indicating that the Nantiaoxi River system is a potential source of CO2 and CH4. The highest mean dissolved CO2 concentrations in water were found in agricultural areas followed by residential and forest areas, and there were significant differences among the three land-use types. The mean dissolved CH4 concentrations in the water in residential areas were significantly higher than those in agricultural area forest areas. The dissolved CO2 concentrations, saturation levels of CO2, dissolved CH4 concentrations, and saturation levels of CH4 in water were all negatively correlated with oxidation reduction potential (ORP) (P<0.01) and positively correlated with electrical conductivity (EC) (P<0.01). The discrepancies in chlorophyll (Chl-a), nitrate (NO3--N), total nitrogen (TN), and EC were the main reasons for differences in dissolved CO2 concentrations among the different land use types. Phytoplankton growth could be promoted by the higher input of nitrogen pollutants into rivers in agricultural and residential areas, and respiration could be also enhanced, resulting in higher dissolved CO2 concentrations. The higher concentrations of dissolved organic carbon (DOC) and ammonium nitrogen (NH4+-N) in the water, and the water temperature in residential areas, were probably the main causes of the higher dissolved CH4 concentrations. Rainfall also had some influence on dissolved CO2 and CH4 concentrations in the water associated with the different land use types. Specifically, higher concentrations of nitrogen pollutants and the enhancement of DOC were the main drivers of high dissolved CO2 concentrations in agricultural areas as well as the higher dissolved CH4 concentrations in residential areas following rainfall events.

12.
J Toxicol Environ Health A ; 84(14): 593-607, 2021 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-33952142

RESUMO

Animal bioassays have been developed to estimate oral relative bioavailability (RBA) of metals in soil, dust, or food for accurate health risk assessment. However, the comparability in RBA estimates from different labs remains largely unclear. Using 12 soil and soil-like standard reference materials (SRMs), this study investigated variability in lead (Pb) and arsenic (As) RBA estimates employing a mouse bioassay in 3 labs at Nanjing University, University of Jinan, and Shandong Normal University. Two performances of the bioassay at Nanjing University in 2019 and 2020 showed reproducible Pb and As RBA estimates, but increasing the number of mouse replicates in 2020 produced more precise RBA measurements. Although there were inter-lab variations in diet consumption rate and metal accumulation in mouse liver and kidneys following SRM ingestion due to differences in diet composition, bioassays at 3 labs in 2019 yielded overall similar Pb and As RBA estimates for the 12 SRMs with strong linear correlations between each 2 of the 3 labs for Pb (R2 = 0.95-0.98 and slope = 0.85-1.02) and As RBA outcomes (R2 = 0.46-0.86 and slope = 0.56-0.79). The consistency in RBA estimates was attributed to the relative nature of the final bioavailability outcome, which might overcome the inter-lab variation in diet consumption and metal uptake in mice. These results increased the confidence of use of mouse bioassays in bioavailability studies.


Assuntos
Arsênio/farmacocinética , Chumbo/farmacocinética , Poluentes do Solo/farmacocinética , Animais , Bioensaio , Disponibilidade Biológica , Feminino , Laboratórios , Camundongos , Camundongos Endogâmicos BALB C , Medição de Risco
13.
BMC Plant Biol ; 20(1): 128, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32216751

RESUMO

BACKGROUND: SNF-related Kinase 1 (SnRK1) is a key component of the cell signaling network. SnRK1 is known to respond to a wide variety of stresses, but its exact role in salt stress response and tolerance is still largely unknown. RESULTS: In this study, we reported that overexpression of the gene encoding the α subunit of Prunus persica SnRK1 (PpSnRK1α) in tomato could improve salt stress tolerance. The increase in salt stress tolerance in PpSnRK1α-overexpressing plants was found to correlate with increased PpSnRK1α expression level and SnRK1 kinase activity. And PpSnRK1α overexpression lines exhibited a lower level of leaf damage as well as increased proline content and reduced malondialdehyde (MDA) compared with wild-type (WT) lines under salt stress. Furthermore, PpSnRK1α enhanced reactive oxygen species (ROS) metabolism by increasing the expression level of antioxidase genes and antioxidant enzyme activities. We further sequenced the transcriptomes of the WT and three PpSnRK1α overexpression lines using RNA-seq and identified about 1000 PpSnRK1α-regulated genes, including many antioxidant enzymes, and these genes were clearly enriched in the MAPK signaling pathway (plant), plant-pathogen interactions and plant hormone signaling transduction and can respond to stimuli, metabolic processes, and biological regulation. Furthermore, we identified the transcriptional levels of several salt stress-responsive genes, SlPP2C37, SlPYL4, SlPYL8, SlNAC022, SlNAC042, and SlSnRK2 family were altered significantly by PpSnRK1α, signifying that SnRK1α may be involved in the ABA signaling pathway to improve tomato salt tolerance. Overall, these findings provided new evidence for the underlying mechanism of SnRK1α conferment in plant salt tolerance phenotypes. CONCLUSIONS: Our findings demonstrated that plant salt stress resistance can be affected by the regulation of the SnRK1α. Further molecular and genetic approaches will accelerate our knowledge of PpSnRK1α functions, and inform the genetic improvement of salt tolerance in tomato through genetic engineering and other related strategies.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Prunus persica/fisiologia , Tolerância ao Sal/genética , Solanum lycopersicum/fisiologia , Ácido Abscísico/metabolismo , Solanum lycopersicum/genética , Oxigênio/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Prunus persica/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA