Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Protein Sci ; 33(6): e4985, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38717278

RESUMO

Inteins are proteins that excise themselves out of host proteins and ligate the flanking polypeptides in an auto-catalytic process called protein splicing. In nature, inteins are either contiguous or split. In the case of split inteins, the two fragments must first form a complex for the splicing to occur. Contiguous inteins have previously been artificially split in two fragments because split inteins allow for distinct applications than contiguous ones. Even naturally split inteins have been split at unnatural split sites to obtain fragments with reduced affinity for one another, which are useful to create conditional inteins or to study protein-protein interactions. So far, split sites in inteins have been heuristically identified. We developed Int&in, a web server freely available for academic research (https://intein.biologie.uni-freiburg.de) that runs a machine learning model using logistic regression to predict active and inactive split sites in inteins with high accuracy. The model was trained on a dataset of 126 split sites generated using the gp41-1, Npu DnaE and CL inteins and validated using 97 split sites extracted from the literature. Despite the limited data size, the model, which uses various protein structural features, as well as sequence conservation information, achieves an accuracy of 0.79 and 0.78 for the training and testing sets, respectively. We envision Int&in will facilitate the engineering of novel split inteins for applications in synthetic and cell biology.


Assuntos
Inteínas , Internet , Aprendizado de Máquina , Processamento de Proteína , Software , Domínio Catalítico
2.
ACS Appl Mater Interfaces ; 15(39): 46300-46310, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37733925

RESUMO

Electrohydrodynamic jet (E-Jet) printing technology provides unmatched advantages in the fabrication of patterned micro/nanostructures. However, the rapid jets generated during printing can lead to localized droplet accumulation on complex structures due to the relatively slow motion control achieved with motorized translation stages, resulting in distorted patterns. To address this challenge, we introduce two jet-deflecting electrodes orthogonally placed on each other, which can rapidly change the electric field in the vicinity of the jet and thus flexibly adjust the flight trajectory of the fast jet to avoid the region where droplets have been deposited. In this way, the jet droplets are precisely controlled to generate high-fidelity microstructures with arbitrary predefined patterns on the stationary substrate. The maximum deflection distance of the jet droplets reaches several hundred microns. Furthermore, the positioning error of the printed structure is less than 3%. Moreover, we successfully obtained a diverse range of complex patterns by combining this technique with stage motion. This innovative printing technology not only enables the fabrication of complex patterned structures with high fidelity but also opens up exciting possibilities for new applications that require complete control of fast droplet positioning.

3.
Polymers (Basel) ; 15(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37765556

RESUMO

To increase the printing stability of low-viscosity solutions, an auxiliary method was proposed using a coaxial electrohydrodynamic jet. A high-viscosity solution was employed as the outer layer in the printing process, and it could be removed (dissolved away) after printing the structures. A combination of mechanical and electrical forces was proposed to enhance the consistency, durability, and alignment of the printed versatile structures. The instability of the jet trajectory (which arose from the repulsion between the jet and the base with a residual charge, in addition to the winding effect of the solution) was also reduced using the drag force along the direction of movement. Moreover, the jet velocity, the surface charge, and the influence of various working voltages on the jet speed were simulated. An array of IDT-BT nanostructures measuring about 100 nm was prepared on silicon dioxide (using an inner needle with a diameter of 130 µm) by equating the moving speed (350 mm/s) of the substrate to the speed of the jet. Moreover, the moving speed (350 mm/s) of the substrate was compared exclusively to the speed of the jet. The method proposed throughout this study can provide a reference for enhancing the stability of low-viscosity solutions on substrates for high-efficiency fabrication devices (NEMS/MEMS).

4.
Microsyst Nanoeng ; 9: 80, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323543

RESUMO

Polymer nanowire (NW) organic field-effect transistors (OFETs) integrated on highly aligned large-area flexible substrates are candidate structures for the development of high-performance flexible electronics. This work presents a universal technique, coaxial focused electrohydrodynamic jet (CFEJ) printing technology, to fabricate highly aligned 90-nm-diameter polymer arrays. This method allows for the preparation of uniformly shaped and precisely positioned nanowires directly on flexible substrates without transfer, thus ensuring their electrical properties. Using indacenodithiophene-co-benzothiadiazole (IDT-BT) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8-BT) as example materials, 5 cm2 arrays were prepared with only minute size variations, which is extremely difficult to do using previously reported methods. According to 2D-GIXRD analysis, the molecules inside the nanowires mainly adopted face-on π-stacking crystallite arrangements. This is quite different from the mixed arrangement of thin films. Nanowire-based OFETs exhibited a high average hole mobility of 1.1 cm2 V-1 s-1 and good device uniformity, indicating the applicability of CFEJ printing as a potential batch manufacturing and integration process for high-performance, scalable polymer nanowire-based OFET circuits. This technique can be used to fabricate various polymer arrays, enabling the use of organic polymer semiconductors in large-area, high-performance electronic devices and providing a new path for the fabrication of flexible displays and wearable electronics in the future.

5.
Nanomaterials (Basel) ; 13(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37177002

RESUMO

This paper presents the concrete design of nanowires under the precise size and morphology that play a crucial role in the practical operation of the micro/nano devices. A straightforward and operative method termed as nib-assistance coaxial electrohydrodynamic (CEHD) printing technology was proposed. It extracts the essence of a nib-assistance electric field intensity to enhance and lessen the internal fluid reflux of the CEHD jet. The experiments were performed to add microparticles into the inner liquid to indicate the liquid flow consistency within the coaxial jet. The reflux in the coaxial jet was observed for the first time in experiments. The nanowires with a minimum size of 70 nm were printed under optimum experimental conditions. The nanopatterns contained aligned nanowires structures with diameters much smaller than the inner diameter of nozzle, relying on the coaxial nib-assisted technique. The printed results revealed that the nib-assisted CEHD printing technique offers a certain level high quality for application of NEMS system.

6.
Nanoscale ; 15(4): 1880-1889, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36606492

RESUMO

Patterning of semiconductor polymers is pertinent to preparing and applying organic field-effect transistors (OFETs). In this study, coaxial focused electrohydrodynamic jet printing (high resolution, high speed, and convenient) was used to pattern polymer semiconductors. The influence of the key printing parameters on the width of polymer sub-microwires was evaluated. The width decreased with increasing applied voltage, printing speed, and concentration of the polymer ink. However, the width increased gradually with increasing polymer ink flow rate. A regression analysis model of the relationship between the printing parameters and width was established. Based on a regression analysis/genetic algorithm, the optimal printing parameters were obtained and the correctness of the printing parameters was verified. The optimized printing parameters stabilized the width of the arrays to ca. 110 nm and imparted a smooth morphology. Additionally, the corresponding OFETs exhibited a high mobility of 2 cm2 V-1 s-1, which is 5× higher than that of thin-film-based OFETs. One can conveniently obtain high-performance OFETs from ordered sub-microwire arrays fabricated by CFEJ printing.

7.
Nat Commun ; 13(1): 6214, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266282

RESUMO

Large area and highly aligned polymer semiconductor sub-microwires were fabricated using the coaxial focused electrohydrodynamic jet printing technology. As indicated by the results, the sub-microwire arrays have smooth morphology, well reproducibility and controllable with a width of ~110 nm. Analysis shows that the molecular chains inside the sub-microwires mainly exhibited edge-on arrangement and the π-stacking direction (010) of the majority of crystals is parallel to the long axis of the sub-microwires. Sub-microwires based organic field effect transistors showed high mobility with an average of 1.9 cm2 V-1 s-1, approximately 5 times higher than that of thin film based organic field effect transistors. In addition, the number of sub-microwires can be conveniently controlled by the printing technique, which can subsequently concisely control the performance of organic field effect transistors. This work demonstrates that sub-microwires fabricated by the coaxial focused electrohydrodynamic jet printing technology create an alternative path for the applications of high-performance organic flexible device.

8.
Micromachines (Basel) ; 13(10)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36296080

RESUMO

Electrohydrodynamic jet (e-jet) printing is a modern and decent fabrication method widely used to print high-resolution versatile microstructures with features down to 10 µm. It is currently difficult to break nanoscale resolution (<100 nm) due to limitations of fluid properties, voltage variations, and needle shapes. This paper presents developments in drop-on-demand e-jet printing based on a phase-field method using a novel combined needle and straight electrode to print on a flexible PET substrate. Initially, the simulation was performed to form a stable cone jet by coupling an innovative straight electrode parallel to a combined needle that directs the generation of droplets at optimized parameters, such as f = 8.6 × 10−10 m3s−1, Vn = 9.0 kV, and Vs = 4.5 kV. Subsequently, printing experiments were performed using optimized processing parameters and all similar simulation conditions. Microdroplets smaller than 13 µm were directly printed on PET substrate. The model is considered unique and powerful for printing versatile microstructures on polymeric substrates. The presented method is useful for MEMS technology to fabricate various devices, such as accelerometers, smartphones, gyroscopes, sensors, and actuators.

9.
Polymers (Basel) ; 14(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35808727

RESUMO

The fabrication of various micro-patterns on polymer insulating substrates is a current requirement in micro-electromechanical system (MEMS) and packaging sectors. In this paper, we use electrohydrodynamic jet (E-Jet) printing to create multifaceted and stable micro-patterns on a polyethylene terephthalate (PET) substrate. Initially, simulation was performed to investigate optimized printing settings in phase field physics for the usage of two distinct functional inks. A series of simulation experiments was conducted, and it was determined that the following parameters are optimised: applied pressure of 40 kPa, high pulse voltage of 1.95 kV, low dc voltage of 1.60 kV, duty cycle of 80%, pulse frequency of 60 Hz, printing height of 0.25 mm, and printing speed of 1 mm/s. Then, experiments showed that adjusting a pressure value of 40 kPa and regulating the SEMICOSIL988/1 K ink to print micro-drops on a polymer substrate with a thickness of 1 mm prevents coffee staining. The smallest measured droplet size was 200 µm. Furthermore, underfill (UF 3808) ink was driven with applied pressure to 50 kPa while other parameters were left constant, and the minimum size of linear patterns was printed to 105 µm on 0.5-mm-thick PET substrate. During the micro-drip and cone-jet regimes, the consistency and diameter of printed micro-structures were accurately regulated at a pulse frequency of 60 Hz and a duty cycle of 80%.

10.
Int J Nanomedicine ; 17: 2435-2446, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35656166

RESUMO

Nasopharyngeal carcinoma (NPC) is a common malignant tumor of the head and neck with a high incidence rate worldwide, especially in southern China. Phototheranostics in combination with nanoparticles is an integrated strategy for enabling simultaneous diagnosis, real-time monitoring, and administration of precision therapy for nasopharyngeal carcinoma (NPC). It has shown great potential in the field of cancer diagnosis and treatment owing to its unique noninvasive advantages. Many Chinese and international research teams have applied nano-targeted drugs to optical diagnosis and treatment technology to conduct multimodal imaging and collaborative treatment of NPC, which has become a hot research topic. In this review, we aimed to introduce the recent developments in phototheranostics of NPC based on a nanoplatform. This study aimed to elaborate on the applications of nanoplatform-based optical imaging strategies and treatment modalities, including fluorescence imaging, photoacoustic imaging, Raman spectroscopy imaging, photodynamic therapy, and photothermal therapy. This study is expected to provide a scientific basis for further research and development of NPC diagnosis and treatment.


Assuntos
Neoplasias Nasofaríngeas , Fototerapia , Humanos , Carcinoma Nasofaríngeo/diagnóstico por imagem , Carcinoma Nasofaríngeo/terapia , Neoplasias Nasofaríngeas/diagnóstico por imagem , Neoplasias Nasofaríngeas/terapia , Imagem Óptica , Terapia Fototérmica
11.
Sci Rep ; 12(1): 1924, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121778

RESUMO

Coaxial electrohydrodynamic jet (CE-Jet) printing is an encouraging method for fabrication of high-resolution micro and nanostructures in MEMS systems. This paper presents a novel simulation work based on phase field method which is considered as a precise technique in fluid dynamics. The study explores influence of various parameters such as applied voltage, needle-substrate distance, dynamic viscosity, relative permittivity, needle size and flow rate on stability and resolution of CE-Jet morphologies. The morphology of CE-Jet exhibits that width of cone-jet profile and printed structures on substrate were directly proportional to relative permittivity and flow rate. In addition, it was inversely proportional to dynamic viscosity and applied voltage. The study examine that CE-Jet length of inner liquid is inversely proportional to needle-substrate distance in same time. It was later verified in experimental study by producing stable CE-Jet morphology with 300 µm diameter using optimized parameters (i.e., DC voltage 7.0 kV and inner liquid flow rate 400 nl/min) as compared to other validation studies such as 400 µm and 500 µm. The CE-Jet printing technique investigates significant changes in consistency and stability of CE-Jet morphologies and makes Jet unique and comparable when adjustment accuracy reaches 0.01 mm. PZT sol line structures with a diameter of 1 µm were printed directly on substrate using inner needle (diameter of 120 µm). Therefore, it is considered as a powerful tool for nano constructs production in M/NEMS devices.

12.
ACS Appl Mater Interfaces ; 13(50): 60625-60635, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34886666

RESUMO

Artificial compound eyes (ACEs) endowed with durable superhydrophobicity, wide field-of-view (FOV), and antireflection properties are extremely appealing in advanced micro-optical systems. However, the simple and high-efficiency fabrication of ACEs with these functions is still a major challenge. Herein, inspired by moth eyes, ACEs with hierarchical macro/micro/nano structures were fabricated using the combination of nanotip-focused electrohydrodynamic jet (NFEJ) printing and air-assisted deformation processes. The NFEJ printing enables the direct and maskless fabrication of hierarchical micro/nanolens arrays (M/NLAs) without intermediate steps. The introduction of M/NLAs on the eye surface significantly improves the water hydrophobic performance with a water contact angle of 161.1° and contact angle hysteresis (CAH) of 4.2° and generally decreases the reflectance by 51% in the wavelength range of 350-1600 nm in comparison to the macroeye without any structures. The contact angle remains almost unchanged, and the CAH slightly increases from 4.2° to 8.7° after water jet impact for 20 min, indicating a durable superhydrophobicity. Moreover, the results confirm that the durable superhydrophobic ACEs with antireflection properties exhibit excellent imaging quality and a large FOV of up to 160° without distortion.

13.
Micromachines (Basel) ; 12(5)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066454

RESUMO

This paper proposes a novel way of preparing a PZT thick film micro vibrator using the electrohydrodynamic jet (E-Jet) printing technique. Initially, a micro piezoelectric vibrator was simulated and designed for obtaining optimized structure, which has a total thickness of less than 600 µm. Subsequently, the PZT thick film element was directly printed on the elastic body using the E-Jet printing. This method avoids the glue fabrication process involved in the bulk piezoelectric fabrication, thus avoiding the limits of voltage drops, isolating and absorbing amplitude usually occurred in the vibrator having glue interface. It was observed that B02 and B03 modes were generated at frequencies of 29.74 and 79.14 kHz, respectively, and the amplitudes of B02 and B03 modes were 406 and 176 nm, respectively. The error between the simulation and test result in the B03 modal is only 0.35%, which indicates the accuracy of the simulation analysis and the fabrication process. The PZT thick film traveling-wave micro vibrator successfully realized bidirectional rotation of a rotor, with a maximum speed of 681 rpm, which also shows a linear relationship between excitation voltage and rotary speed. This paper provides an effective method for preparing a micro piezoelectric vibrator for MEMS ultrasonic devices, which simplifies the manufacturing process and enhances the performance of the piezoelectric vibrator.

14.
Nanotechnology ; 32(26)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33740778

RESUMO

Electrospinning is a simple, cost-effective, and versatile technique for fabrication of nanofibers. However, nanofibers obtained from the conventional electrospinning are typically disordered, which seriously limits their application. In this work, we present a novel and facile technique to obtain aligned nanofibers with high efficiency by using parallel inductive-plates assisted electrospinning (PIES). In this new electrospinning setup, the electrostatic spinneret is contained in a pair of parallel inductive-plates, which can change the shape and direction of the electric field line during the electrospinning so as to control the flight trajectory and spatial alignment of the spinning nanofibers. This electrospinning setup can divide the electric field line into two parts which are respectively directed to the edge of the upper and lower inductive-plates. Then the nanofibers move along the electric field line, suspend and align between the parallel inductive-plates. Finally, the well aligned nanofibers could be easily transferred onto other substrates for further characterizations and applications. The aligned nanofibers with an average diameter of 469 ± 115 nm and a length as long as 140 mm were successfully achieved by using PIES technique. Moreover, nanofiber arrays with different cross angles and three-dimensional films formed by the aligned nanofibers were also facilely obtained. The novel PIES developed in this work has been proved to be a facile, cost-effective and promising approach to prepare aligned nanofibers for a wide range of applications.

15.
Nanotechnology ; 32(10): 105301, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33227721

RESUMO

Electrohydrodynamic jet (E-Jet) printing is a powerful technique for micro/nanostructure fabrication with high resolution and efficiency. However, conventional E-Jet printing are still limited in printing accuracy and ink adaptability due to the nozzle clogging effect. In this paper, we develop a nano-tip focused electrohydrodynamic jet (NFEJ) method to print high-resolution structures. The Ni cantilever nanoprobes with nanoscale radius of curvature (ROC) on their tips were manufactured by a facile and scalable method using silicon template and micro-electroforming technique. Scanning electron microscope was used to analyse the micromorphology of the silicon template with inverted pyramid pits, which was obtained from anisotropic wet etching of silicon. Electroforming mold was obtained by photolithography and plasma etching which divide the top side of Ni film into isolated cantilever pits. Ni cantilever nanoprobes with an average tip ROC of about 48 nm were achieved by the subsequent micro electroforming process. High-resolution droplets array with an average diameter of about 890 ± 93 nm were printed by the NFEJ printing head equipped with these Ni nanoprobes, which verified the practicality of the developed Ni nanoprobes for NFEJ printing.

16.
Nanoscale ; 12(48): 24450-24462, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33300927

RESUMO

Electrohydrodynamic jet (E-Jet) printing is a promising manufacturing technique for micro-/nano-patterned structures with high resolution, high efficiency and high material compatibility. However, further improvement of the necking ratio of the E-Jet is still limited by the focusing principle. Moreover, ink viscosity is limited to values well below 90 mPa s owing to the high probability of nozzle blockage. Here, we propose a microtip focused electrohydrodynamic jet (MFEJ) printing to overcome these limitations. This technique uses a solid microtip with a radius of curvature (ROC) of several micrometers rather than a hollow nozzle, which is very simple and highly efficient to prepare and can effectively avoid nozzle clogging problems even with high-viscosity printing ink. High-resolution patterns in diverse geometries were printed using different inks with a wide range of viscosities (8.4-3500 mPa s). Nanodroplets with an average diameter of 73 nm were achieved. Moreover, nanofibers with a diameter of 30 nm were obtained using a 4 µm ROC microtip and the necking ratio was as high as 266 : 1. To the best of our knowledge, this is the smallest droplet or fiber diameter directly obtained via E-Jet printing to date without further physical or chemical processing. This MFEJ printing technique can improve printing resolution at the nanoscale, significantly enlarge the material applicability and effectively avoid nozzle clogging for the fabrication of nanodevices.

17.
Talanta ; 211: 120750, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32070610

RESUMO

Controlled printing of biodegradable and bioresorbable polymers at desired 3D scaffold is of great importance for cell growth and tissue regeneration. In this work, a novel electrohydrodynamic jet 3D printing technology with the resultant effect of electrohydrodynamic force and thermal convection was developed, and its feasibility to fabricate controllable filament composite scaffolds was verified. This method introduces an effective thermal field under the needle to simultaneously enhance the ink viscosity, jetting morphology controllability and printing structure solidify. The fabrication mechanisms of thermal convection on jetting morphology and printed structures feature were investigated through theoretical analysis and experimental characterization. Under optimized conditions, a stable and finer jet was formed; then with the use of this jet, various 3D structures were directly printed at a high aspect ratio ~30. Furthermore, the PCL/PVP composite scaffolds with the controllable filament diameter (~10 µm) which is closed to living cells were printed. Cell culture experiments showed that the printed scaffolds had excellent cell biocompatibility and facilitated cellular proliferation in vitro. It is a great potential that the developed electrohydrodynamic jet 3D printing technology might provide a novel approach to directly print composite synthetic biopolymers into flexibly scale structures for tissue engineering applications.


Assuntos
Cartilagem/citologia , Poliésteres/química , Povidona/análogos & derivados , Impressão Tridimensional/instrumentação , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Células Cultivadas , Técnicas Eletroquímicas , Hidrodinâmica , Teste de Materiais , Camundongos , Povidona/química
18.
Rev Sci Instrum ; 90(11): 115001, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31779448

RESUMO

In this work, an instrument of drop-on-demand electrohydrodynamic jet (DoD E-Jet) printing device equipped with a current measurement and control system was designed and developed for finely controlling the printing process. The relationships between the current and printing parameters of voltage, frequency, and flow rate were deeply investigated, and the examination data and conclusion were obtained under the condition of the needle size remaining unchanged. Especially, the equation relationship between the flow rate and current was established, which can be used for the modification of the DoD E-Jet printing process. The map describing the stable printing range, droplet size, and current was also recognized, which can help us to select parameters for stable printing. Based on the current measurement and control system and the established relationship, the optimized current and printing parameters were chosen to print uniform graphene microstructures. This instrument provides an effective method for monitoring, adjusting, and controlling the DoD E-Jet printing process and further improving the quality of the printed structures for micro/nanoelectromechanical system (M/NEMS) devices.

19.
Mitochondrial DNA B Resour ; 4(2): 3752-3753, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-33366174

RESUMO

Liparis nervosa is a plant of the family Orchidaceae and mainly distributed in subtropical and tropical regions of the world. In Chinese traditional medicine, it has been used for the treatment of hemostasis, carbuncle, and furuncle for centuries. The chloroplast (cp) genome of L. nervosa, sequenced based on next-generation platform (NEOSAT), is 157,274 bp in size. The cp genome encodes 130 genes, including eight rRNA genes, 85 protein-coding genes (PCGs), and 37 tRNA genes. Phylogenetic relationship analysis based on complete cp genome sequences exhibited that both of L. nervosa and L. loeselii were phylogenetically closer to Dendrobium officinale.

20.
Mitochondrial DNA B Resour ; 4(2): 3888-3889, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-33366236

RESUMO

Paris polyphylla var. chinensis is a species of flowering herb of the family Liliaceae and widely distributed in 12 provinces in China. It has been used in Chinese traditional medicine for centuries. The chloroplast (cp) genome of P. polyphylla var. chinensis, sequenced based on next-generation platform (NEOSAT), is 164,429 bp in size. The cp genome encodes 133 genes, including eight rRNA genes, 87 protein-coding genes (PCGs), and 38 tRNA genes. Phylogenetic relationship analysis based on complete cp genome sequences exhibited that P. polyphylla var. chinensis was most related to Daiswa forrestii.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA