Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
1.
J Colloid Interface Sci ; 679(Pt A): 132-140, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39357223

RESUMO

Mixed iron-based phosphate Na4Fe3(PO4)2P2O7/C (NFPP) has gradually emerged as a promising cathode material for sodium-ion batteries (SIBs) owing to its affordability and convenient preparation. However, poor electrical conductivity and inadequate sodium-ion diffusion limit the exertion of its electrochemical properties. Herein, a structural modulation strategy based on Cd doping is applied to NFPP to address the above limitations. In situ X-ray diffraction analysis reveals that Cd-doped NFPP (NFCPP) undergoes an incomplete solid-solution reaction driven by Fe2+/Fe3+ redox. Cd doping effectively stabilises the crystal structure, resulting in a minimal 1 % change in unit cell volume during cycling. Density of state calculations indicate that Cd doping reduces the band gap, increases the local electron density and significantly improves electron conductivity. Benefitting from the enhanced electrochemical kinetics and intercalation pseudocapacitance, the optimised Na4Fe2.91Cd0.09(PO4)2P2O7/C (NFCPP@3%) exhibits exceptional rate performance (capacity of 62 mAh/g at 20 C) and ultra-long cycling life (82.7 % after 6000 cycles at 20 C). A full SIB prepared using NFCPP@3% and hard carbon, display a 91 % capacity retention rate at a current density of 130 mA g-1 over 200 cycles. This work demonstrates that doping can effectively enhance electrochemical performance and offers insights into future development of SIBs.

2.
Sci Rep ; 14(1): 20173, 2024 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-39215055

RESUMO

MRI-guided targeted biopsy (MRGB) was recommended as part of biopsy paradigm of prostate cancers by current guidelines. This study aimed to analyze the diagnostic efficacy of MRGB and systemic biopsy (SB), and to compare diagnostic capabilities within subgroups of MRGB: MRI-cognitive biopsy (MRCB) and MRI-fusion biopsy (MRFB). We retrospectively enrolled patients who underwent MRGB for suspicious malignant lesion(s) identified on MRI in a single tertiary center, sample size was 74 patients. An mpMRI was performed prior to biopsy and reviewed by an experienced radiologist specialized in prostate cancer. Per-person results of MRGB and each concomitant SB were analyzed as independent biopsies for its positive biopsy rate and positive core percentage. Per-lesion results of MRFB and MRCB were compared for the detection rate. Variables of interest were analyzed with t-test, chi-squared test, and logistic regression analysis. Statistical analyses were performed with IBM Statistical Product and Service Solutions (SPSS), Version 23 (IBM, Armonk, New York). Total of 74 patients fulfilled the inclusion criteria and were enrolled. MRFB had higher PCa detection rate comparing to both MRCB and SB (56.1%, 30.3%, and 33.9% respectively, p value = 0.036); clinically significant prostate cancer (csPCa) detection rate was also significantly higher in MRFB group (43.9%, 24.2%, and 16.9% in each group respectively, p value = 0.011). In per-lesion analysis, MRCB and MRFB had no significant difference in PCa and csPCa detection rate (41.0% vs. 26.2% and 29.5% vs. 16.7% respectively, p value = 0.090 and 0.103). In the lesion ≦ 1.3 cm group, MRFB could achieve higher PCa detection rate, comparing to MRCB (36.4% vs. 14.3%, p value = 0.047); there were also higher positive rates for PCa and csPCa per biopsied cores (22.1% vs. 6.8% and 15.6% vs. 2.7%, p value = 0.029 and 0.028, respectively). Further logistic regression of multi-variate analysis in subgroup of lesion ≦ 1.3 cm revealed that PIRADS score and biopsy method were significant predictors of positive biopsy result for PCa (p value = 0.045 and 0.026, respectively) and for csPCa (p value = 0.043 and 0.025, respectively). In patients receiving trans-perineal prostate biopsy, MRFB had higher cancer detection rate than MRCB and SB. In per lesion comparison, MRFB and MRCB had similar diagnostic accuracy. However, in lesions with diameter less than 1.3 cm, MRFB can provided better diagnose value for PCa and csPCa than MRCB.


Assuntos
Biópsia Guiada por Imagem , Imageamento por Ressonância Magnética , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico , Biópsia Guiada por Imagem/métodos , Idoso , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Próstata/patologia , Próstata/diagnóstico por imagem , Ultrassonografia de Intervenção/métodos
3.
Oncol Lett ; 28(4): 485, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39170882

RESUMO

Prostate cancer (PCa) is the second most prevalent malignancy in men worldwide. The risk factors for PCa include obesity, age and family history. Increased visceral fat has been associated with high PCa risk, which has prompted previous researchers to investigate the influence of body composition and fat distribution on PCa prognosis. However, there is a lack of studies focusing on the mechanisms and interactions between periprostatic adipose tissue (PPAT) and PCa cells. The present study investigated the association between the composition of pelvic adipose tissue and PCa aggressiveness to understand the role played by this tissue in PCa progression. Moreover, PPAT-conditioned medium (CM) was prepared to assess the influence of the PPAT secretome on the pathophysiology of PCa. The present study included 50 patients with localized PCa who received robot-assisted radical prostatectomy. Medical records were collected, magnetic resonance imaging scans were analyzed and body compositions were calculated to identify the associations between adipose tissue volume and clinical PCa aggressiveness. In addition, CM was prepared from PPAT and perivesical adipose tissue (PVAT) collected from 25 patients during surgery, and its effects on the PCa cell lines C4-2 and LNCaP, and the prostate epithelial cell line PZ-HPV-7, were investigated using a cell proliferation assay and RNA sequencing (RNA-seq). The results revealed that the initial prostate-specific antigen level was significantly correlated with pelvic and periprostatic adipose tissue volumes. In addition, PPAT volume was significantly higher in patients with extracapsular tumor extension. PCa cell proliferation was significantly reduced when the cells were cultured in PPAT-CM compared with when they were cultured in control- and PVAT-CM. RNA-seq revealed that immune responses, and the cell death and apoptosis pathways were enriched in PPAT-CM-cultured cells indicating that the cytokines or other factors secreted from PPAT-CM induced PCa cell apoptosis. These findings revealed that the PPAT secretome may inhibit PCa cell proliferation by activating immune responses and promoting cancer cell apoptosis. This mechanism may act as a first-line defense during the early stages of PCa.

4.
Anal Chem ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140526

RESUMO

Developing an activity detection platform for hyaluronidase (HAase) is crucial for diagnosing and treating cancer. However, traditional detection of HAase is based on changes in the flow rate caused by viscosity or requires complex modifications and processing, which limits the detection accuracy and sensitivity. Herein, hyaluronic acid (HA)-modified mesoporous-based heterochannels (mesoporous carbon-doped γ-Fe2O3 nanoparticles/anodized aluminum oxide, MC-γ-Fe2O3/AAO) featuring ordered 3D transport frameworks and a photothermal property were developed for high performance HAase detection. The HA molecules on the surface of the mesoporous layer provide abundant active sites for HAase detection. An improved ionic current was realized after enzymatic hydrolysis reactions between HA and HAase due to enhanced surface charges and more hydrophilicity, leading to highly sensitive and accurate HAase detection. Notably, the detection performance can be further upgraded with the assistance of the photothermal property of γ-Fe2O3. An amplified detection current signal was achieved owing to a synergistic effect between ion currents and photoresponsive currents. A wide linear detection range from 1 to 50 U/mL and a low detection limit of 0.348 U/mL were obtained, achieving a 2% improvement under illumination. Importantly, the heterochannels have also been successfully applied for HAase detection in fetal bovine serum samples, manifesting considerable application prospects. This work provides a new strategy in constructing photoresponsive nanochannels with a photothermal property for a highly efficient biosensing platform.

5.
Vaccines (Basel) ; 12(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39066352

RESUMO

SARS-CoV-2 new waves are primarily caused by changes to the spike protein (S), which can substantially decrease the efficacy of vaccines. Therefore, we tested several multivalent mRNA-LNP vaccines, targeting the full-length S proteins of different variants, and identified an optimal combination for protection against VOCs in BALB/c mice. The tested formulations included trivalent (WT + BA.5 + XBB.1.5), pentavalent (WT + BA.5 + XBB.1.5 + BQ.1.1 + CH.1.1), and octavalent (WT + BA.5 + XBB.1.5 + BQ.1.1 + CH.1.1 + Alpha + Delta + BA.2) vaccines. Among these multivalent vaccines, the pentavalent vaccine showed superior protection for almost all tested variants. Despite this, each multivalent vaccine elicited greater broad-spectrum neutralizing antibodies than the previously evaluated bivalent vaccine (WT + BA.5). Subsequently, we redesigned the multivalent vaccine to efficiently generate neutralizing antibodies against recent VOCs, including EG.5.1. Immunization with the redesigned pentavalent vaccine (WT + EG.5.1 + XBB.1.16 + Delta + BA.5) showed moderate levels of protection against recent Omicron VOCs. Results suggest that the neutralization activity of multivalent vaccines is better than those of the tested bivalent vaccines against WT + BA.5 and WT + EG.5.1. Moreover, the pentavalent vaccine we developed may be highly useful for neutralizing new Omicron VOCs.

6.
J Ethnopharmacol ; 334: 118571, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38996953

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jiawei Bai-Hu-Decoction (JWBHD), a prescription formulated with seven traditional Chinese medicinal material has demonstrated clinical efficacy in mitigating brain injury among heat stroke (HS) patients. AIM OF THE STUDY: This study aimed to evaluate the therapeutic efficacy of JWBHD on rat model of HS and to explore its therapeutic mechanisms by integrating network pharmacology and pharmacodynamic methodologies, which major components were analyzed by using UPLC-MS/MS. MATERIALS AND METHODS: The network pharmacology analysis was firstly conducted to predict the potential active ingredients and therapeutic targets of JWBHD. The anti-HS effectiveness of JWBHD was then evaluated on rats experienced HS. Rat brain tissues were harvested for a comprehensive array of experiments, including Western blot, PCR, H&E staining, Nissl staining, ELISA, transmission electron microscope, flow cytometry and immunofluorescence to validate the protective effects of JWBHD against HS-induced brain damage. Furthermore, the inhibitory effects of JWBHD on TLR4/NF-κB signal and mitophagy of glial were further verified on HS-challenged F98 cell line. Finally, the chemical compositions of the water extract of JWBHD were analyzed by using UPLC-MS/MS. RESULTS: Network pharmacology has identified fifty core targets and numerous HS-related signaling pathways as potential therapeutic targets of JWBHD. Analysis of protein-protein interaction (PPI) and GO suggests that JWBHD may suppress HS-induced inflammatory signals. In experiments conducted on HS-rats, JWBHD significantly reduced the core temperature, restored blood pressure and alleviated neurological defect. Furthermore, JWBHD downregulated the counts of white blood cells and monocytes, decreased the levels of inflammatory cytokines such as IL-1ß, IL-6 and TNF-α in peripheral blood, and suppressed the expression of TLR4 and NF-κB in the cerebral cortex of HS-rats. Besides, JWBHD inhibited the apoptosis of cortical cells and mitigated the damage to the cerebral cortex in HS group. Conversely, overactive mitophagy was observed in the cerebral cortex of HS-rats. However, JWBHD restored the mitochondrial membrane potential and downregulated expressions of mitophagic proteins including Pink1, Parkin, LC3B and Tom20. JWBHD reduced the co-localization of Pink1 and GFAP, a specific marker of astrocytes in the cerebral cortex of HS-rats. In addition, the inhibitory effect of JWBHD on TLR4/NF-κB signaling and overactive mitophagy were further confirmed in F98 cells. Finally, UPLC-MS/MS analysis showed that the main components of JWBHD include isoliquiritigenin, liquiritin, dipotassium glycyrrhizinate, ginsenoside Rb1, ginsenoside Re, etc. CONCLUSIONS: JWBHD protected rats from HS and prevented HS-induced damage in the cerebral cortex by suppressing TLR4/NF-κB signaling and mitophagy of glial.


Assuntos
Medicamentos de Ervas Chinesas , Golpe de Calor , Mitofagia , NF-kappa B , Neuroglia , Ratos Sprague-Dawley , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Mitofagia/efeitos dos fármacos , NF-kappa B/metabolismo , Masculino , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Transdução de Sinais/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Ratos , Golpe de Calor/tratamento farmacológico , Golpe de Calor/complicações , Fármacos Neuroprotetores/farmacologia , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/metabolismo , Lesões Encefálicas/prevenção & controle , Farmacologia em Rede , Modelos Animais de Doenças
7.
ACS Appl Mater Interfaces ; 16(24): 31666-31676, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38833630

RESUMO

ß-Ga2O3 is an ultrawide-band gap semiconductor with excellent potential for high-power and ultraviolet optoelectronic device applications. Low thermal conductivity is one of the major obstacles to enable the full performance of ß-Ga2O3-based devices. A promising solution for this problem is to integrate ß-Ga2O3 with a diamond heat sink. However, the thermal properties of the ß-Ga2O3/diamond heterostructures after the interfacial bonding have not been studied extensively, which are influenced by the crystal orientations and interfacial atoms for the ß-Ga2O3 and diamond interfaces. In this work, molecular dynamics simulations based on machine learning potential have been adopted to investigate the crystal-orientation-dependent and interfacial-atom-dependent thermal boundary resistance (TBR) of the ß-Ga2O3/diamond heterostructure after interfacial bonding. The differences in TBR at different interfaces are explained in detail through the explorations of thermal conductivity value, thermal conductivity spectra, vibration density of states, and interfacial structures. Based on the above explorations, a further understanding of the influence of different crystal orientations and interfacial atoms on the ß-Ga2O3/diamond heterostructure was achieved. Finally, insightful optimization strategies have been proposed in the study, which could pave the way for better thermal design and management of ß-Ga2O3/diamond heterostructures according to guidance in the selection of the crystal orientations and interfacial atoms of the ß-Ga2O3 and diamond interfaces.

8.
Angew Chem Int Ed Engl ; 63(32): e202407491, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38735853

RESUMO

Ion-selective nanochannel membranes assembled from two-dimensional (2D) nanosheets hold immense promise for power conversion using salinity gradient. However, they face challenges stemming from insufficient surface charge density, which impairs both permselectivity and durability. Herein, we present a novel vacancy-engineered, oxygen-deficient NiCo layered double hydroxide (NiCoLDH)/cellulose nanofibers-wrapped carbon nanotubes (VOLDH/CNF-CNT) composite membrane. This membrane, featuring abundant angstrom-scale, cation-selective nanochannels, is designed and fabricated through a synergistic combination of vacancy engineering and interfacial super-assembly. The composite membrane shows interlayer free-spacing of ~3.62 Å, which validates the membrane size exclusion selectivity. This strategy, validated by DFT calculations and experimental data, improves hydrophilicity and surface charge density, leading to the strong interaction with K+ ions to benefit the low ion transport resistance and exceptional charge selectivity. When employed in an artificial river water|seawater salinity gradient power generator, it delivers a high-power density of 5.35 W/m2 with long-term durability (20,000s), which is almost 400 % higher than that of the pristine NiCoLDH membrane. Furthermore, it displays both pH- and temperature-sensitive ion transport behavior, offering additional opportunities for optimization. This work establishes a basis for high-performance salinity gradient power conversion and underscores the potential of vacancy engineering and super-assembly in customizing 2D nanomaterials for diverse advanced nanofluidic energy devices.

9.
ACS Nano ; 18(19): 12547-12559, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38695563

RESUMO

Enantioselective sensing and separation represent formidable challenges across a diverse range of scientific domains. The advent of hybrid chiral membranes offers a promising avenue to address these challenges, capitalizing on their unique characteristics, including their heterogeneous structure, porosity, and abundance of chiral surfaces. However, the prevailing fabrication methods typically involve the initial preparation of achiral porous membranes followed by subsequent modification with chiral molecules, limiting their synthesis flexibility and controllability. Moreover, existing chiral membranes struggle to achieve coupled-accelerated enantioseparation (CAE). Here, we report a replacement strategy to controllably produce mesoscale and chiral silica-carbon (MCSC) hybrid membranes that comprise chiral pores by interfacial superassembly on a macroporous alumina (AAO) membrane, in which both ion- and enantiomers can be effectively and selectively transported across the membrane. As a result, the heterostructured hybrid membrane (MCSC/AAO) exhibits enhanced selectivity for cations and enantiomers of amino acids, achieving CAE for amino acids with an isoelectric point (pI) exceeding 7. Interestingly, the MCSC/AAO system demonstrates enhanced pH-sensitive enantioseparation compared to chiral mesoporous silica/AAO (CMS/AAO) with significant improvements of 78.14, 65.37, and 14.29% in the separation efficiency, separation factor, and permeate flux, respectively. This work promises to advance the synthesis of two or more component-integrated chiral nanochannels with multifunctional properties and allows a better understanding of the origins of the homochiral hybrid membranes.

10.
ACS Appl Mater Interfaces ; 16(21): 27998-28007, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38759105

RESUMO

AlN/diamond heterostructures hold tremendous promise for the development of next-generation high-power electronic devices due to their ultrawide band gaps and other exceptional properties. However, the poor adhesion at the AlN/diamond interface is a significant challenge that will lead to film delamination and device performance degradation. In this study, the uniaxial tensile failure of the AlN/diamond heterogeneous interfaces was investigated by molecular dynamics simulations based on a neuroevolutionary machine learning potential (NEP) model. The interatomic interactions can be successfully described by trained NEP, the reliability of which has been demonstrated by the prediction of the cleavage planes of AlN and diamond. It can be revealed that the annealing treatment can reduce the total potential energy by enhancing the binding of the C and N atoms at interfaces. The strain engineering of AlN also has an important impact on the mechanical properties of the interface. Furthermore, the influence of the surface roughness and interfacial nanostructures on the AlN/diamond heterostructures has been considered. It can be indicated that the combination of surface roughness reduction, AlN strain engineering, and annealing treatment can effectively result in superior and more stable interfacial mechanical properties, which can provide a promising solution to the optimization of mechanical properties, of ultrawide band gap semiconductor heterostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA