Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(9): e2317435121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377211

RESUMO

Creating efficient catalysts for simultaneous H2O2 generation and pollutant degradation is vital. Piezocatalytic H2O2 synthesis offers a promising alternative to traditional methods but faces challenges like sacrificial reagents, harsh conditions, and low activity. In this study, we introduce a cobalt-loaded ZnO (CZO) piezocatalyst that efficiently generates H2O2 from H2O and O2 under ultrasonic (US) treatment in ambient aqueous conditions. The catalyst demonstrates exceptional performance with ~50.9% TOC removal of phenol and in situ generation of 1.3 mM H2O2, significantly outperforming pure ZnO. Notably, the CZO piezocatalyst maintains its H2O2 generation capability even after multiple cycles, showing continuous improvement (from 1.3 mM to 1.8 mM). This is attributed to the piezoelectric electrons promoting the generation of dynamic defects under US conditions, which in turn promotes the adsorption and activation of oxygen, thereby facilitating efficient H2O2 production, as confirmed by EPR spectrometry, XPS analysis, and DFT calculations. Moreover, the CZO piezocatalysts maintain outstanding performance in pollutant degradation and H2O2 production even after long periods of inactivity, and the deactivated catalyst due to metal ion dissolution could be rejuvenated by pH adjustment, offering a sustainable solution for wastewater purification.

2.
Heliyon ; 10(1): e23860, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38261955

RESUMO

Background: Asthma is a chronic inflammatory disorder with high prevalence in childhood. Airway remodeling, an important structural change of the airways, is resulted from epithelial-mesenchymal transition. Long non-coding RNA non-coding RNA activated by DNA damage (NORAD) has been found to promote epithelial-mesenchymal transition in multiple cancers. This study aimed to analyze the role of NORAD in asthma, mainly focusing on epithelial-mesenchymal transition-mediated airway remodeling, and further explored the NORAD-miRNA-mRNA network. Methods: NORAD expression was analyzed in transforming growth factor-ß1-induced BEAS-2B human bronchial epithelial cells and ovalbumin-challenged asthmatic mice. The influences of NORAD on the epithelial-mesenchymal transition characteristics and Wnt/ß-catenin pathway activation were analyzed in vitro. The interactions between NORAD and miR-410-3p as well as miR-410-3p and regulator of chromosome condensation 2 were detected by dual-luciferase reporter assay and RNA pull-down assay. Rescue experiments using miR-410-3p antagonist and chromosome condensation 2 overexpression were used to confirm the mechanism of NORAD. Additionally, the role and mechanism of NORAD were further evaluated in asthmatic mice. Results: NORAD expression was elevated in both asthmatic models. Knockdown of NORAD impeded spindle-like morphology changes, elevated E-cadherin expression, decreased N-cadherin expression, suppressed cell migration, and inactivated the Wnt/ß-catenin pathway in transforming growth factor-ß1-stimulated BEAS-2B cells. NORAD acted as a sponge of miR-410-3p to regulate chromosome condensation 2 expression. Rescue assays demonstrated that silencing of NORAD ameliorated transforming growth factor-ß1-induced EMT via miR-410-3p/chromosome condensation 2/Wnt/ß-catenin axis. In vivo, knockdown of NORAD led to the reduction of inflammatory cell infiltration and collagen deposition, suppression of IL-4, IL-13, transforming growth factor-ß1 and immunoglobulin E production, decreasing of N-cadherin, chromosome condensation 2, ß-catenin and c-Myc expression, but increasing of E-cadherin and miR-410-3p expression. Conclusions: Silencing of NORAD alleviated epithelial-mesenchymal transition-mediated airway remodeling in asthma via mediating miR-410-3p/chromosome condensation 2/Wnt/ß-catenin pathway.

3.
ACS Omega ; 8(23): 20313-20322, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37323418

RESUMO

The catastrophic failure of metal/ceramic interfaces is a complex process involving the energy transfer between accumulated elastic strain energy and many types of energy dissipation. To quantify the contribution of bulk and interface cohesive energy to the interface cleavage fracture without global plastic deformation, we characterized the quasi-static fracture process of both coherent and semi-coherent fcc-metal/MgO(001) interface systems using a spring series model and molecular static simulations. Our results show that the theoretical catastrophe point and spring-back length by the spring series model are basically consistent with the simulation results of the coherent interface systems. For defect interfaces with misfit dislocations, atomistic simulations revealed an obvious interface weakening effect in terms of reduced tensile strength and work of adhesion. As the model thickness increases, the tensile failure behaviors show significant scale effects-thick models tend to catastrophic failure with abrupt stress drop and obvious spring-back phenomenon. This work provides insight into the origin of catastrophic failure at metal/ceramic interfaces, which highlights a pathway by combining the material and structure design to improve the reliability of layered metal-ceramic composites.

4.
Food Res Int ; 164: 112379, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737964

RESUMO

The microbiota is of great importance in forming flavor compounds and improving sensory characteristics during wine fermentation. Understanding microbial succession is critical for controlling its contribution to wine flavor with predictable sensory quality. In this study, microbial community composition and characteristic flavor compounds were identified during the inoculation fermentation (IF) and spontaneous fermentation (SF) to provide a basis for exploring the relationship between these microorganisms and volatile components. The results demonstrated that SF had higher fungal community diversity and lower bacterial community diversity than IF. Eleven (11) fungal and 10 bacterial genera (relative abundance > 0.1 %) were considered beneficial microbiota. Saccharomyces, Hanseniaspora, and Alternaria were the leading fungal genera in SF. Massilia, Nesterenkonia, and Halomonas were the predominant bacteria in IF, while Tatumella and Ochrobactrum were mainly from SF. In addition, the microbial community composition was reshaped via correlational analysis between microbiota succession and physicochemical properties, mainly attributed to the changes in environmental factors during fermentation. The SF wines had more aromatic higher alcohols, acetate esters, and terpenes. Also, the sensory evaluation showed that the SF wines were characterized by more fruity, floral, intense, and typical aromas. The associations between the microbial community and the volatile components indicated that the dominant species largely determined the characteristic flavor compounds during fermentation.


Assuntos
Microbiota , Micobioma , Saccharomyces , Vinho , Vinho/análise , Fermentação , Bactérias
5.
Phys Chem Chem Phys ; 25(1): 192-202, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36484421

RESUMO

The mechanical response of graphene foams (GrFs) can be enhanced by both short crosslinkers (e.g. C-C bond) and long carbon nanotubes (CNTs) in experiments; however, the underlying mechanism is still unclear. Here, a coarse-grained molecular dynamics method is used to study the mechanical response and microscopic mechanism of GrF interconnected by both short crosslinkers and long CNTs (named CNT bonded GrF, CbGrF) under tension and compression, and the effect of the properties of graphene and CNTs on the mechanical properties of CbGrF is also investigated. Compared with short bonds, long CNTs play a reinforcing role at a larger tensile strain, leading to larger tensile strength and toughness. Under compression, the sliding and rotation of graphene sheets in CbGrF are prevented by long CNTs, resulting in higher compressive stiffness than that of pure GrFs. Furthermore, the tensile and compressive moduli increase by more than 300% with increasing thickness of graphene sheets from 1 to 9 layers; they increase by no more than 50% as the CNT bending stiffness increases and are almost independent of the stretching stiffness of CNTs. These results should be helpful for understanding the tunability of GrFs using both short and long crosslinkers and guiding the preparation of advanced GrF-based composites.

6.
Phys Chem Chem Phys ; 24(48): 29461-29470, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36468435

RESUMO

The performance of ceramic/polymer composite materials is significantly affected by their internal interfaces. To reveal the intrinsic interface fracturing mechanism of ceramic/polymer interfaces, an interfacial model composed of SiO2 and polypropylene (PP) is investigated using the molecular dynamics method. The interface damage is quantified by the increase in the interface free volume and deformation of a single PP chain. As stretching speeds increase, the free volume and outflowing atoms of PP chains decrease with the same interfacial displacement, which results in the increase of the interface strength and fracture energy. At low stretching speeds, the interface damage mechanism is determined by a competition between attractions of the PP single chains from SiO2 and PP. In contrast, at higher stretching speeds, the interface fracture is more brittle and the interface strength and fracture energy are both higher owing to the smaller cavity ratio. The results of this study contribute to an in depth understanding of the fracture mechanism of ceramic/polymer interfaces in many systems.

7.
Front Mol Biosci ; 9: 952608, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936782

RESUMO

Niemann-Pick type C disease (NPCD) is a rare genetic syndrome characterized by cholesterol accumulation in multiple organelles. NPCD is mainly caused by gene deficiency of NPC intracellular cholesterol transporter 1 (NPC1). It has been reported that some of the NPCD patients exhibit clinical features of progressive hearing loss at high frequency and iron disorder, but the underlying relationship is unknown. A recent study has reported that ferroptosis contributes to the impairment of cochlear hair cells that are related to sensory hearing. In this study, we generated NPC1-deficient HEI-OC1 cells to show the effect of NPC1 deficiency on cochlear outer hair cells. We found that NPC1 deficiency enhances autophagy-dependent ferritinophagy to release Fe (II). Our work provides important insights into the effect of NPC1 deficiency in auditory cells, indicating that it induces ferroptosis and results in hearing loss.

8.
Front Microbiol ; 13: 921164, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875549

RESUMO

Antrodia camphorata is rich in a variety of bioactive ingredients; however, the utilization efficiency of the residue of A. camphorata is low, resulting in serious waste. It is necessary to deeply study the functional components of A. camphorata residues to achieve high-value utilization. In this study, the components, structural characteristics, and functional properties of alkali-extracted dietary fiber extracted from residues of A. camphorata (basswood and dish cultured fruiting body, respectively) were investigated. There were similar components and structural characteristics of ACA-DK (extract from basswood cultured) and ACA-DF (extract from dish cultured). The two alkali-extracted dietary fiber were composed of mainly cellulose and xylan. However, ACA-DK has better adsorption capacities than ACA-DF on lipophilic substances such as oil (12.09 g/g), cholesterol (20.99 mg/g), and bile salts (69.68 mg/g). In vitro immunomodulatory assays stated that ACA-DK had a good effect on promoting the proliferation of RAW 264.7 cells and can activate cell phagocytosis, NO synthesis, and other immune capabilities. The edible fungus A. camphorata is a good source of functional dietary fiber. The alkali-extracted dietary fiber of A. camphorata might be used as a functional ingredient in the medicine and food industry.

9.
Front Microbiol ; 13: 845837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35633724

RESUMO

Non-Saccharomyces (NS) yeasts with high ß-glucosidase activity play a vital role in improving the aroma complexity of wines by releasing aroma compounds from glycosidic precursors during fermentation. In this study, the effect of sequential inoculation fermentation of Meyerozyma guilliermondii NM218 and Hanseniaspora uvarum BF345 with two Saccharomyces cerevisiae strains [Vintage Red™ (VR) and Aroma White™ (AW)] on volatile compounds and sensory characteristics of wines was investigated. Prior to winemaking trials, the sequential inoculation times of the two NS yeasts were evaluated in synthetic must, based on changes in strain population and enzyme activity. The intervals for inoculation of NM218 and BF345 with the S. cerevisiae strains were 48 and 24 h, respectively. In the main experiment, sequential inoculation fermentations of the two strains with S. cerevisiae were carried out in Cabernet Sauvignon (CS) and Chardonnay (CH) grape must. The oenological parameters, volatile composition, and sensory characteristics of the final wines were assessed. No clear differences were observed in the oenological parameters of the sequentially fermented CH wines compared with the control, except for residual sugar and alcohol. However, in CS wines, the total acid contents were significantly lower in the wines fermented by sequential inoculation compared to the control. Both NM218 and BF345 improved the aroma complexity of wines by increasing esters and terpenes when inoculated with S. cerevisiae strains compared to inoculation with S. cerevisiae strains alone. NM218 resulted in a more positive effect on CS wine aroma, with higher levels of citronellol and trans-nerolidol. BF345 significantly enhanced the floral and fruity aromas of CH wine by producing higher concentrations of geranyl acetone, ß-damascenone, trans-nerolidol, and nerol. Both NM218 and BF345 yeasts could potentially be used to improve wine aroma and overall quality, especially wine floral and fruity aromas, when used in sequential inoculation with S. cerevisiae.

10.
ACS Omega ; 7(7): 6322-6334, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35224394

RESUMO

α-Asaronol from Acorus tatarinowii (known as "Shichangpu" in Traditional Chinese medicine) has been proved to possess more efficient antiepileptic activity and lower toxicity than α-asarone (namely "Xixinnaojiaonang" as an antiepileptic drug in China) in our previous study. However, the molecular mechanism of α-asaronol against epilepsy needs to be known if to become a novel antiepileptic medicine. Nuclear magnetic resonance (NMR)-based metabolomics was applied to investigate the metabolic patterns of plasma and the brain tissue extract from pentylenetetrazole (PTZ)-induced seizure rats when treated with α-asaronol or α-asarone. The results showed that α-asaronol can regulate the metabolomic level of epileptic rats to normal to some extent, and four metabolic pathways were associated with the antiepileptic effect of α-asaronol, including alanine, aspartate, and glutamate metabolism; synthesis and degradation of ketone bodies; glutamine and glutamate metabolism; and glycine, serine, and threonine metabolism. It was concluded that α-asaronol plays a vital role in enhancing energy metabolism, regulating the balance of excitatory and inhibitory neurotransmitters, and inhibiting cell membrane damage to prevent the occurrence of epilepsy. These findings are of great significance in developing α-asaronol into a promising antiepileptic drug derived from Traditional Chinese medicine.

11.
J Ind Microbiol Biotechnol ; 49(1)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34791342

RESUMO

The solid-state fermentation of Antrodia camphorata could produce a variety of ubiquinone compounds, such as antroquinonol (AQ). However, AQ is hardly synthesized during liquid-state fermentation (LSF). To investigates the mechanism of AQ synthesis, three precursors (ubiquinone 0 UQ0, farnesol and farnesyl diphosphate FPP) were added in LSF. The results showed that UQ0 successfully induced AQ production; however, farnesol and FPP could not induce AQ synthesis. The precursor that restricts the synthesis of AQ is the quinone ring, not the isoprene side chain. Then, the Agrobacterium-mediated transformation system of A. camphorata was established and the genes for quinone ring modification (coq2-6) and isoprene synthesis (HMGR, fps) were overexpressed. The results showed that overexpression of genes for isoprene side chain synthesis could not increase the yield of AQ, but overexpression of coq2 and coq5 could significantly increase AQ production. This is consistent with the results of the experiment of precursors. It indicated that the A. camphorata lack the ability to modify the quinone ring of AQ during LSF. Of the modification steps, prenylation of UQ0 is the key step of AQ biosynthesis. The result will help us to understand the genetic evidence for the requirements of AQ biosynthesis in A. camphorata.


Assuntos
Antrodia , Ubiquinona , Antrodia/metabolismo , Fermentação , Polyporales , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
12.
BMC Gastroenterol ; 21(1): 351, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556038

RESUMO

BACKGROUND: Irreversible electroporation (IRE) is an emerging tissue ablation technique with widespread potential, especially for cancer treatment. Although the safety and efficacy of IRE for gastric tissue ablation have been demonstrated, there is a gap of knowledge regarding the effect of electroporation pulse (EP) on the physiology and histopathology of the stomach. This study applied EP to the stomach of healthy rats and investigated the digestive function, serum marker levels, and gastric tissue structure of EP-treated rats. METHODS: Ninety male rats were divided into nine groups and examined up to 28 days post-treatment. A single burst of electroporation pulse (500 V, 99 pluses, 1 Hz, 100 µs) was delivered to the stomachs of rats using a tweezer-style round electrode. Gastric emptying, small intestinal transit, and gastric secretion were measured to evaluate the digestive function. Serum marker levels were determined using ELISA. Haematoxylin-eosin, Masson trichrome, and immunofluorescence were performed for histopathological analysis. RESULTS: No  significant effect on gastric emptying or secretion was found post-EP, whereas the small intestinal transit decreased at 4 h and rapidly recovered to normal on 1-day post-EP. Further, serum TNF-α and IL-1ß levels temporarily changed during the acute phase but returned to baseline within 28 days. Moreover, histopathological analysis revealed that cell death occurred immediately post-EP in the ablation area, whereas the gastric wall scaffold in the ablation region remained intact post-EP. CONCLUSIONS: This study demonstrates the safety and efficacy of EP on the physiology and histopathology of the stomach and lays a foundation for more comprehensive applications of this technique.


Assuntos
Técnicas de Ablação , Eletroporação , Animais , Frequência Cardíaca , Masculino , Ratos , Coloração e Rotulagem , Estômago
13.
Angew Chem Int Ed Engl ; 60(31): 17155-17163, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34041830

RESUMO

Although Fenton or Fenton-like reactions have been widely used in the environment, biology, life science, and other fields, the sharp decrease in their activity under macroneutral conditions is still a large problem. This study reports a MoS2 cocatalytic heterogeneous Fenton (CoFe2 O4 /MoS2 ) system capable of sustainably degrading organic pollutants, such as phenol, in a macroneutral buffer solution. An acidic microenvironment in the slipping plane of CoFe2 O4 is successfully constructed by chemically bonding with MoS2 . This microenvironment is not affected by the surrounding pH, which ensures the stable circulation of Fe3+ /Fe2+ on the surface of CoFe2 O4 /MoS2 under neutral or even alkaline conditions. Additionally, CoFe2 O4 /MoS2 always exposes "fresh" active sites for the decomposition of H2 O2 and the generation of 1 O2 , effectively inhibiting the production of iron sludge and enhancing the remediation of organic pollutants, even in actual wastewater. This work not only experimentally verifies the existence of an acidic microenvironment on the surface of heterogeneous catalysts for the first time, but also eliminates the pH limitation of the Fenton reaction for pollutant remediation, thereby expanding the applicability of Fenton technology.


Assuntos
Dissulfetos/química , Poluentes Ambientais/química , Compostos Férricos/química , Molibdênio/química , Recuperação e Remediação Ambiental , Concentração de Íons de Hidrogênio
14.
Eur Radiol ; 31(11): 8187-8196, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33893857

RESUMO

OBJECTIVES: This study was to investigate clinical applicability of diffusion spectrum imaging (DSI) for quantitative detection of visual pathway abnormalities to predict the degree of visual field defects (VFD) in patients with pituitary adenomas. METHODS: Sixty-five patients with pituitary adenomas and 33 healthy controls underwent conventional MRI and DSI scanning that allowed high-angular-resolution fiber tracking. Optic chiasmal compression and VFD were confirmed in all patients via radiological and neuro-ophthalmological examinations. Quantitative assessments of chiasmal lift, VFD, and DSI parameters from the optic nerve, optic tract, and optic radiation were performed. Group comparisons and correlation analyses were conducted in patients and controls. Using the 5-fold cross-validation method, the support vector machine classifiers were constructed to predict the degree of visual defects. RESULTS: The mean values of quantitative anisotropy and generalized fractional anisotropy in optic nerve and optic tract showed significant differences between patients and controls (p < 0.05). These parameters were also significantly correlated with the chiasmal lift distance and degree of visual defects (p < 0.05). All patients were divided into mild (n = 42) and severe (n = 23) VFD groups, using the mean deviation value of -8 dB as the threshold. The classifiers achieved an accuracy of 0.83, sensitivity of 0.78, and specificity of 0.86 to discriminate patients with mild and severe visual defects. CONCLUSIONS: Using high-angular-resolution fiber tracking, DSI may provide quantitative information to detect visual pathway abnormalities and be a potential diagnostic tool for determining the degree of visual field defects in pituitary adenomas. KEY POINTS: • Abnormal QA and GFA values of optic nerve and optic tract in adenoma patients • Close relationship between DSI parameters and VFD degree in adenoma patients • The classifiers achieved an accuracy of 0.83, sensitivity of 0.78, and specificity of 0.86 to discriminate patients with mild and severe VFD.


Assuntos
Adenoma , Neoplasias Hipofisárias , Adenoma/complicações , Adenoma/diagnóstico por imagem , Humanos , Neoplasias Hipofisárias/complicações , Neoplasias Hipofisárias/diagnóstico por imagem , Testes de Campo Visual , Campos Visuais , Vias Visuais/diagnóstico por imagem
15.
Front Neurol ; 12: 636518, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716939

RESUMO

Purpose: The purpose of this study was to measure the diffusion spectrum imaging (DSI) parameters of corticospinal tracts (CSTs) and evaluate diffusional changes in CSTs in patients with idiopathic normal pressure hydrocephalus (iNPH) by DSI. Methods: Twenty-three iNPH patients and twenty-one healthy controls (HCs) were involved in this study. Brain DSI data for all participants were collected through the same MR scanning procedure. The diffusion parameters measured and analyzed included quantitative anisotropy (QA), the isotropic diffusion component (ISO), general fractional anisotropy (GFA), fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) of corticospinal tracts. Results: The QA and ISO values of corticospinal tracts in iNPH patients were significantly lower than those in HCs (PLQA = 0.008, PRQA = 0.016, PLISO = 0.024, PRISO = 0.016). The mean MD, AD, and RD values in iNPH patients were significantly higher than those in HCs (PMD = 0.032, PAD = 0.032, PRD = 0.048,). No significant differences in GFA and FA values were noted between iNPH patients and HCs. Conclusion: Decreased QA and ISO values of corticospinal tracts were found in iNPH patients. Quantitative CST evaluation using DSI may lead to information that can improve the present understanding of the disease mechanism.

16.
Food Funct ; 12(7): 2925-2937, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33720247

RESUMO

This study aimed to investigate the protective effect of Antrodin A (AdA) from Antrodia camphorata (A. camphorata) mycelium on alcohol-induced gut microbiota and liver metabolomic disorders. In acute alcoholic liver injury mice, AdA ameliorated alcoholic exposure-induced hepatic lipid deposition (TC and TG), oxidative stress (MDA), inflammation (TNF-α, IL-1ß, IL-6, IL-17 and IFN-γ), and liver damage via modulating microbiome and metabolomic responses. AdA restored the composition of intestinal flora with an increase in the relative abundance of Lactobacillus and Dubosiella and a decrease in Clostridium_sensu_stricto_1, Lachnospiraceae_NK4A136_group, Prevotellaceae_NK3B31_group, and Prevotellaceae_UCG-001. Besides, AdA favorably regulated alcohol-induced metabolic disorders, including glutathione metabolism (S-(2-hydroxyethyl)glutathione and glutathione oxidized), ascorbate and aldarate metabolism (l-ascorbic acid), and taurine and hypotaurine metabolism (taurine). In conclusion, AdA in A. camphorata is a beneficial active ingredient to treat the microbiomic and metabolic disturbance induced by alcohol intake.


Assuntos
Antrodia , Hepatopatias Alcoólicas/prevenção & controle , Anidridos Maleicos/uso terapêutico , Animais , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Fígado/metabolismo , Masculino , Anidridos Maleicos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Fitoterapia
17.
Phytochemistry ; 184: 112677, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33556840

RESUMO

Antroquinonol (AQ) as one of the most potent bioactive components in Antrodia cinnamomea (Fomitopsidaceae) shows a broad spectrum of anticancer effects. The lower yield of AQ has hampered its possible clinical application. AQ production may potentially be improved by genetic engineering. In this study, the protoplast-polyethylene glycol method combined with hygromycin as a selection marker was used in the genetic engineering of A. cinnamomea S-29. The optimization of several crucial parameters revealed that the optimal condition for generating maximal viable protoplasts was digestion of 4-day-old germlings with a mixture of enzymes (lysing enzyme, snailase, and cellulase) and 1.0 M MgSO4 for 4 h. The ubiA and CoQ2 genes, which are involved in the synthesis of 4-hydroxybenzoate polyprenyltransferase, were cloned and overexpressed in A. cinnamomea. The results showed that ubiA and CoQ2 overexpression significantly increased AQ production in submerged fermentation. The overexpressing strain produced maximum AQ concentrations of 14.75 ± 0.41 mg/L and 19.25 ± 0.29 mg/L in pCT74-gpd-ubiA and pCT74-gpd-CoQ2 transformants, respectively. These concentrations were 2.00 and 2.61 times greater than those produced by the control, respectively. This research exemplifies how the production of metabolites may be increased by genetic manipulation, and will be invaluable to guide the genetic engineering of other mushrooms that produce medically useful compounds.


Assuntos
Antrodia , Alquil e Aril Transferases , Polyporales , Ubiquinona/análogos & derivados
18.
Materials (Basel) ; 14(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445778

RESUMO

Interface strength, damage and fracture properties between ceramic films and metallic substrates affect the service reliability of related parts. The films' thickness, grain size and residual stress affect the interface properties and fracture behavior, thus related studies attract great attention. In this paper, the interface damage evolution and fracture behavior between ceramic films and metallic substrates were simulated by developing a three dimensional finite element model of alumina films on Ni substrates with cohesive elements in the interfaces. The interface fracture energy as a key parameter in the simulation was firstly determined based on its thermodynamic definition. The simulation results show the Mises stress distribution and damage evolution of the film/substrate structures during uniaxial tensile loading. Specially, when grain size of the films is in nanoscale, the interface strength increases obviously, agreeing with the previous experimental results. The effects of residual stress on interface properties was further simulated. The interface strength was found to decrease with increasing radial residual force and the axial residual pressure increases the interface strength. When the thickness of the films increases, the interface strength keeps a constant but the speed of interface damage becomes faster, that is, the thicker films show catastrophic fracture. The underlying mechanism of damage speed was analyzed. Understanding these size effects and the effects of residual stress is helpful to guide the design of related parts.

19.
Surg Endosc ; 35(10): 5665-5674, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33420599

RESUMO

BACKGROUND: The aim of this study was to evaluate the feasibility, safety, and efficacy of magnetic anchoring and guidance-assisted endoscopic irreversible electroporation (MAG-IRE) for gastric mucosal ablation. METHODS: A catheter-based, donut-like, and MAG-assisted electrode was developed. MAG-IRE for gastric mucosal ablation was performed in eight beagle canines. The parameters of one set of IRE was 500 V voltage, 100 µs pulse duration, and 99 pulses. The MAG time, operation time, success rate, and adverse events were measured. Endoscopic examination was performed from 30 min to 28 days post-IRE. Full-thickness gastric tissue was harvested by wedge biopsy for histopathological analysis. RESULTS: 30 (93.75%) of the 32 lesions were successfully ablated by MAG-IRE. The median MAG time was 300 s (IQR 120-422.5 s), and the median operation time was 491.5 s (IQR 358.3-632.5 s). No adverse events occurred. Ulceration was observed, starting from 3 days post-IRE. The mucosa healed 14 to 28 days post-IRE. Hematoxylin-Eosin (H&E) staining showed inflammatory infiltration, edema, and congestion in the ablated mucosa. Masson's Trichrome staining showed that the gastric wall and blood vessels in the ablation area were intact. TUNEL assay showed diffuse positive cells in ablated mucosa as early as 30 min post-IRE. CONCLUSIONS: MAG-IRE for gastric mucosal ablation is feasible, safe, and effective. It can be a potential therapeutic option for minimally invasive treatment of gastric neoplasm.


Assuntos
Técnicas de Ablação , Eletroporação , Animais , Cães , Endoscopia , Mucosa Gástrica/cirurgia , Fenômenos Magnéticos
20.
iScience ; 23(7): 101252, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32650117

RESUMO

The accumulation of giant lipid droplets (LDs) increases the risk of metabolic disorders including obesity and insulin resistance. The lipolysis process involves the activation and transfer of lipase, but the molecular mechanism is not completely understood. The translocation of ATGL, a critical lipolysis lipase, from the ER to the LD surface is mediated by an energy catabolism complex. Oxysterol-binding protein-like 2 (OSBPL2/ORP2) is one of the lipid transfer proteins that regulates intracellular cholesterol homeostasis. A recent study has proven that Osbpl2-/- pigs exhibit hypercholesterolemia and obesity phenotypes with an increase in adipocytes. In this study, we identified that OSBPL2 links the endoplasmic reticulum (ER) with LDs, binds to COPB1, and mediates ATGL transport. We provide important insights into the function of OSBPL2, indicating that it is required for the regulation of lipid droplet lipolysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA