Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 10(11): eadl3925, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478606

RESUMO

A dilemma arises when striving to balance the maximum desired ion conductivity and minimize the undesired lithium polysulfide shuttling effect for all-solid-state lithium-sulfur batteries (ASSLSBs). Here, we introduce a strategy of using ordered MIL-125-NH2 as fillers for poly(ethylene oxide)-based electrolytes to simultaneously regulate the transportation of lithium ions and polysulfides. When compared to electrolytes lacking metal-organic frameworks (MOFs) and those containing disordered MOFs, the electrolyte featuring an ordered-MOF structure, denoted as three-dimensional (3D) MPPL composite solid electrolyte (CSE), exhibits the highest ion conductivity of 8.3 × 10-4 siemens per centimeter at 60°C. As a result, pouch-type ASSLSBs with 3D MPPL CSE maintains stable cycling for 400 cycles at 0.5 C at 60°C, showcasing the successful implementation of this strategy in simultaneously regulating ion and polysulfide transport. This approach opens up alternative avenues to achieve high-performance ASSLSBs with exceptional energy density.

2.
Acta Biomater ; 177: 178-188, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38307480

RESUMO

Glistenings often occur after implanting the intraocular lens (IOL) due to the formation of numerous microvacuoles (MVs) and may lead to deterioration of vision quality. Previous studies showed the formation of MVs was associated with the hydrophobicity of IOL materials. Yet, the mechanism remains an open question due to the complexity of IOL polymer networks. In this study, two commercialized IOLs with similar hydrophobicity are found distinct in the formation of MVs. The 3D growth kinetics of MVs during cooling processes are captured for the first time by digital holographic microscopy (DHM) and the components of MVs are measured by DHM and Raman spectroscopy. The results reveal that the growth of MVs stems from the microphase separation of water and surrounding IOL polymers. A polymer swelling model is thus proposed to describe the microphase separation process which is found dependent on the elasticity of IOL polymer networks. The total volume of MVs is determined by the IOL hydrophobicity, while the elastic force of IOL polymer networks determines the number density and size of MVs. This study demonstrates an approach for characterizing the phase separation of crosslinked polymeric materials in biosystems and sheds lights on the refinement of IOL materials. STATEMENT OF SIGNIFICANCE: Glistenings due to the formation of numerous microvacuoles (MVs) in intraocular lens (IOL) can occur after IOL implantation, which may induce poor quality of vision. However, the underlying mechanism of MVs formation is still an open question. This study establishes an in-situ 3D imaging platform to monitor growth kinetics of the MVs in IOLs, which allows to uncover the mechanism of glistenings formation resulting from the microphase separation. The findings imply the material hydrophobicity influences the total volume of MVs, while the local elasticity of IOL polymer networks determines the number density and the size of MVs. This study offers a new approach for characterizing phase separation in crosslinking biosystems and sheds lights on the refinement of IOL materials.


Assuntos
Lentes Intraoculares , Polímeros , Resinas Acrílicas , Interações Hidrofóbicas e Hidrofílicas
3.
Anal Chem ; 95(2): 1318-1326, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36577742

RESUMO

Raman spectra are often masked by strong fluorescence, which severely hinders the applications of Raman spectroscopy. Herein, for the first time, we report ionic-wind-enhanced Raman spectroscopy (IWERS) incorporated with photobleaching (PB) as a noninvasive approach to detect fluorescent and vulnerable samples without a substrate. In this study, ionic wind (IW) generated by needle-net electrodes transfers charges to the sample surface in air on the scale of millimeters rather than nanometers in surface-enhanced Raman spectroscopy. Density functional theory calculations reveal that the ionic particles in IW increase the susceptibility of the sample molecules, thus enhancing the Raman signals. Meanwhile, the incorporation of IW with PB yields a synergistic effect to quench fluorescence. Therefore, this approach can improve the signal-to-noise ratio of Raman peaks up to three times higher than that with only PB. At the same time, IWERS can avoid sample pollution and destruction without substrates as well as high laser power. For archeological samples and a red rock as an analogue to Mars geological samples, IWERS successfully identified weak but key Raman peaks, which were masked by strong florescence. It suggests that IWERS is a promising tool for characterizations in the fields of archeology, planetary science, biomedicine, and soft matter.


Assuntos
Lasers , Análise Espectral Raman , Análise Espectral Raman/métodos , Razão Sinal-Ruído , Fotodegradação
4.
Glob Chall ; 4(8): 2000008, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32782823

RESUMO

Cancer is a leading cause of death in the world. In cancer radiotherapy, immobilization membranes composed of cross-linked poly(ε-caprolactone) (PCL) are utilized for patient positioning. A higher-dimensional stability of the membrane is urgently required to facilitate more accurate radiation dose delivery. It is extremely important to establish the relationship between the degree of crystallinity and the Young's modulus (E) because it determines the mechanical properties and can be modulated by crystallinity. When two components of the membrane with different strains are in contact, a gradient region adjacent to the interface is formed and confirmed by attenuated total reflection infrared microscopy. Atomic force microscopy (AFM) and Raman spectroscopy are used to scan the same area in the gradient region (14 µm × 14 µm) to characterize E and crystallinity (X Raman), respectively. This co-localized method ensures the accuracy of the relationship. Finally, 1764 AFM measurement data are processed and 49 pairs of E-X Raman data are obtained. The regression curve shows that E monotonically increases with X Raman. The nonlinearity of the curve may be attributed to the α-relaxation and cross-linking of PCL chains. The chemical structure of this material significantly impacts the mechanical properties, thus requiring future investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA