Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol J ; 19(4): e2400050, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38651271

RESUMO

Hepatocellular carcinoma (HCC) is a digestive tract cancer with high mortality and poor prognosis, especially in China. Current chemotherapeutic drugs lead to poor prognosis, low efficacy, and high side effects due to weak targeting specificity and rapidly formed multidrug resistance (MDR). Based on the previous studies on the doxorubicin (DOX) formulation for cancer targeting therapy, we developed a novel DOX delivery formulation for the targeting chemotherapy of HCC and DOX resistant HCC. HCSP4 was previously screened and casein kinase 2α (CK2α) was predicted as its specific target on HCC cells in our lab. In the study, miR125a-5p was firstly predicted as an MDR inhibiting miRNA, and then CK2α was validated as the target of HCSP4 and miR125a-5p using CK2α-/-HepG2 cells. Based on the above, an HCC targeting and MDR inhibiting DOX delivery liposomal formulation, HCSP4/Lipo-DOX/miR125a-5p was synthesized and tested for its HCC therapeutic efficacy in vitro. The results showed that the liposomal DOX delivery formulation targeted to HCC cells specifically and sensitively, and presented the satisfied therapeutic efficacy for HCC, particularly for DOX resistant HCC. The potential therapeutic mechanism of the DOX delivery formulation was explored, and the formulation inhibited the expression of MDR-relevant genes including ATP-binding cassette subfamily B member 1 (ABCB1, also known as P-glycoprotein), ATP-binding cassette subfamily C member 5 (ABCC5), enhancer of zeste homolog 2 (EZH2), and ATPase Na+/K+ transporting subunit beta 1 (ATP1B1). Our study presents a novel targeting chemotherapeutic drug formulation for the therapy of HCC, especially for drug resistant HCC, although it is primarily and needs further study in vivo, but provided a new strategy for the development of novel anticancer drugs.


Assuntos
Carcinoma Hepatocelular , Caseína Quinase II , Doxorrubicina , Resistencia a Medicamentos Antineoplásicos , Lipossomos , Neoplasias Hepáticas , Humanos , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Lipossomos/química , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Caseína Quinase II/antagonistas & inibidores , Células Hep G2 , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , MicroRNAs/genética
2.
ACS Appl Mater Interfaces ; 11(49): 45999-46007, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31718132

RESUMO

A fast radiative rate, highly suppressed nonradiation, and a short exciton lifetime are key elements for achieving efficient thermally activated delayed fluorescence (TADF) organic light-emitting diodes (OLEDs) with reduced efficiency roll-off at a high current density. Herein, four representative TADF emitters are designed and synthesized based on the combination of benzophenone (BP) or 3-benzoylpyridine (BPy3) acceptors, with dendritic 3,3″,6,6″-tetra-tert-butyl-9'H-9,3':6',9″-tercarbazole (CDTC) or 10H-spiro(acridine-9,9'-thioxanthene) (TXDMAc) donors, respectively. Density functional theory simulation and X-ray diffraction analysis validated the formation of CH···N intramolecular hydrogen bonds regarding the BPy3-CDTC and BPy3-TXDMAc compounds. Notably, the construction of intramolecular hydrogen bonding within TADF emitters significantly enhances the intramolecular charge transfer (ICT) strength while reducing the donor-acceptor (D-A) dihedral angle, resulting in accelerated radiative and suppressed nonradiative processes. With short TADF exciton lifetimes (τTADF) and high photoluminescence quantum yields (ϕPL), OLEDs employing BPy3-CDTC and BPy3-TXDMAc dopants realized maximum external quantum efficiencies (EQEs) up to 18.9 and 25.6%, respectively. Moreover, the nondoped device based on BPy3-TXDMAc exhibited a maximum EQE of 18.7%, accompanied by an extremely small efficiency loss of only 4.1% at the luminance of 1000 cd m-2. In particular, the operational lifetime of the sky-blue BPy3-CDTC-based device was greatly extended by 10 times in contrast to the BP-CDTC-based counterpart, verifying the idea that the in-built intramolecular hydrogen bonding strategy was promising for the realization of efficient and stable TADF-OLEDs.

3.
Chemistry ; 25(67): 15375-15386, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31573110

RESUMO

Iridium complexes bearing chelating cyclometalates are popular choices as dopant emitters in the fabrication of organic light-emitting diodes (OLEDs). In this contribution, we report a series of blue-emitting, bis-tridentate IrIII complexes bearing chelates with two fused five-six-membered metallacycles, which are in sharp contrast to the traditional designs of tridentate chelates that form the alternative, fused five-five metallacycles. Five IrIII complexes, Px-21-23, Cz-4, and Cz-5, have been synthesized that contain a coordinated dicarbene pincer chelate incorporating a methylene spacer and a dianionic chromophoric chelate possessing either a phenoxy or carbazolyl appendage to tune the coordination arrangement. All these tridentate chelates afford peripheral ligand-metal-ligand bite angles of 166-170°, which are larger than the typical bite angle of 153-155° observed for their five-five-coordinated tridentate counterparts, thereby leading to reduced geometrical distortion in the octahedral frameworks. Photophysical measurements and TD-DFT studies verified the inherent transition characteristics that give rise to high emission efficiency, and photodegradation experiments confirmed the improved stability in comparison with the benchmark fac-[Ir(ppy)3 ] in degassed toluene at room temperature. Phosphorescent OLED devices were also fabricated, among which the carbazolyl-functionalized emitter Cz-5 exhibited the best performance among all the studied bis-tridentate phosphors, showing a maximum external quantum efficiency (EQEmax ) of 18.7 % and CIEx,y coordinates of (0.145, 0.218), with a slightly reduced EQE of 13.7 % at 100 cd m-2 due to efficiency roll-off.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA