Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Medicine (Baltimore) ; 102(43): e35684, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37904447

RESUMO

At present, detailed demographic and clinical data of moyamoya disease (MMD) in the population of Southeast China are lacking. Therefore, this study aimed to evaluate the epidemiological and clinical features of MMD in Southeast China. Our cohort included 170 patients diagnosed with MMD over the preceding 5 years. Clinical characteristics were obtained through a retrospective chart review, while follow-up information and outcomes were obtained through clinical visits and imaging. The median age at symptom onset was 49 years (range 4-73), with a peak in the age distribution observed at 41 to 60 years. The female-to-male ratio was 1.125 (90/80), and the ratio of the ischemic type to the hemorrhagic type was 2.33 (119/50). The most common initial symptom was an ischemic event. The 5-year Kaplan-Meier risk of stroke was 4.9% for all patients treated with surgical revascularization. Of all patients, 83.9% were able to live independently with no significant disability, and 89.8% showed improved cerebral hemodynamics. Our study provided detailed demographic and clinical data on Southeastern Chinese patients with MMD, which was consistent with findings in other parts of China. Raising clinical awareness of MMD in primary hospitals is important to facilitate early diagnosis and timely treatment of MMD patients.


Assuntos
Revascularização Cerebral , Doença de Moyamoya , Humanos , Masculino , Feminino , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Doença de Moyamoya/diagnóstico , Doença de Moyamoya/epidemiologia , Doença de Moyamoya/cirurgia , Resultado do Tratamento , China/epidemiologia , Revascularização Cerebral/métodos
2.
World J Psychiatry ; 13(9): 620-629, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37771639

RESUMO

BACKGROUND: Autophagy is associated with hippocampal injury following status epilepticus (SE) and is considered a potential therapeutic mechanism. Baicalin, an emerging multitherapeutic drug, has shown neuroprotective effects in patients with nervous system diseases due to its antioxidant properties. AIM: To investigate the potential role of autophagy in LiCl-pilocarpine-induced SE. METHODS: The drugs were administered 30 min before SE. Nissl staining showed that Baicalin attenuated hippocampal injury and reduced neuronal death in the hippocampus. Western blotting and terminal deoxynucleotidyl transferase dUTP nick end labeling assay confirmed that Baicalin reversed the expression intensity of cleaved caspase-3 and apoptosis in hippocampal CA1 following SE. Fur-thermore, western blotting and immunofluorescence staining were used to measure the expression of autophagy markers (p62/SQSTM1, Beclin 1, and LC3) and apoptotic pathway markers (cleaved caspase-3 and Bcl-2). RESULTS: Baicalin significantly upregulated autophagic activity and downregulated mitochondrial apoptotic pathway markers. Conversely, 3-methyladenine, a commonly used autophagy inhibitor, was simultaneously administered to inhibit the Baicalin-induced autophagy, abrogating the protective effect of Baicalin on the mitochondrial apoptotic level. CONCLUSION: We illustrated that Baicalin-induced activation of autophagy alleviates apoptotic death and protects the hippocampus of SE rats.

3.
Chin J Integr Med ; 29(10): 885-894, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37357242

RESUMO

OBJECTIVE: To explore the effect and mechanism of schisandrin B (Sch B) in the treatment of cerebral ischemia in rats. METHODS: The cerebral ischemia models were induced by middle cerebral artery occlusion (MCAO) and reperfusion. Sprague-Dawley rats were divided into 6 groups using a random number table, including sham, MCAO, MCAO+Sch B (50 mg/kg), MCAO+Sch B (100 mg/kg), MCAO+Sch B (100 mg/kg)+LY294002, and MCAO+Sch B (100 mg/kg)+wortmannin groups. The effects of Sch B on pathological indicators, including neurological deficit scores, cerebral infarct volume, and brain edema, were subsequently studied. Tissue apoptosis was identified by terminal transferase-mediated dUTP nick end-labeling (TUNEL) staining. The protein expressions involved in apoptosis, inflammation response and oxidative stress were examined by immunofluorescent staining, biochemical analysis and Western blot analysis, respectively. The effect of Sch B on phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling was also explored. RESULTS: Sch B treatment decreased neurological deficit scores, cerebral water content, and infarct volume in MCAO rats (P<0.05 or P<0.01). Neuronal nuclei and TUNEL staining indicated that Sch B also reduced apoptosis in brain tissues, as well as the Bax/Bcl-2 ratio and caspase-3 expression (P<0.01). Sch B regulated the production of myeloperoxidase, malondialdehyde, nitric oxide and superoxide dismutase, as well as the release of cytokine interleukin (IL)-1 ß and IL-18, in MCAO rats (P<0.05 or P<0.01). Sch B promoted the phosphorylation of PI3K and AKT. Blocking the PI3K/AKT signaling pathway with LY294002 or wortmannin reduced the protective effect of Sch B against cerebral ischemia (P<0.05 or P<0.01). CONCLUSIONS: Sch B reduced apoptosis, inflammatory response, and oxidative stress of MCAO rats by modulating the PI3K/AKT pathway. Sch B had a potential for treating cerebral ischemia.

4.
PeerJ ; 10: e12942, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186504

RESUMO

BACKGROUND: Glioblastoma is the most common and fatal primary malignant tumor in the central nervous system, and the prognosis is poor. Currently, there are no effective treatments for glioblastoma. Cordycepin is a natural active substance with significant anticancer activity and doxorubicin is a broad-spectrum anticancer drug. Cordycepin administered with doxorubicin is a potential drug combination for the treatment of glioblastoma. However, the mechanism of action for this drug combination has not yet been elucidated. AIM OF THE STUDY: To explore the complex mechanism of cordycepin combined with doxorubicin against glioblastoma using network pharmacology and biological verification. MATERIALS AND METHODS: We used an MTT assay, colony formation assay, and scratch healing to detect the growth, proliferation, and migration of LN-229, U251 and T98G cells. Putative targets and the potential mechanism of action for the drug combination in glioblastoma were obtained through online databases, network construction, and enrichment analyses. We verified the expression of EMT-related genes and identified important therapeutic targets by western blot. RESULTS: In this study, the combination of doxorubicin and cordycepin was found to significantly inhibit cell proliferation and migration and can induce apoptosis. These effects are better together than with either drug alone. The drug combination inhibited EMT by upregulating the expression of E-cadherin protein and downregulating the expression of N-cadherin, ZEB1, and Twist1 proteins. There were 71 potential targets for the drug combination in glioblastoma, and Kyoto Encyclopedia of Genes and Genome analysis suggested that the anticancer process may be mediated by proteoglycans in cancer, the tumor necrosis factor signaling pathway, microRNA in cancer, pathways in cancer, and other pathways. To study the molecular mechanism of anticancer activity, we detected the expression of target proteins with downregulated expression of NFKB1, MAPK8, MYC, and MMP-9 proteins and upregulated expression of cleaved caspase 3 that promoted the apoptosis of LN-229 cells. CONCLUSIONS: This study shows that the drug combination of doxorubicin and cordycepin effectively inhibits the growth and proliferation of LN-229 cells through multiple targets and multiple pathways, and the combination inhibits cell invasion and migration by regulating the EMT switch of tumor cells. Our findings provide new ideas about, and a theoretical basis for, the treatment of glioblastoma.


Assuntos
Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Farmacologia em Rede , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Fatores de Transcrição/uso terapêutico
5.
Cell Signal ; 76: 109787, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33007387

RESUMO

Status epilepticus (SE) induces apoptosis of hippocampal neurons. However, the underlying mechanism in SE is not fully understood. Recently, lncRNA TUG1 is reported as a significant mediator in neuronal development. In present study, we aimed to investigate whether lncRNA TUG1 induces apoptosis of hippocampal neurons in SE rat models. TUG1 expression in serum of normal volunteers and SE patients, SE rats and neurons with epileptiform discharge was detected. SE rat model was established and intervened with TUG1 to evaluate hippocampal neuronal apoptosis. The experiments in vitro were further performed in neurons with epileptiform discharge to verify the effects of TUG1 on neuronal apoptosis of SE rats. The downstream mechanism of TUG1 was predicted and verified. miR-421 was intervened to perform the rescue experiments. Levels of oxidative stress and inflammation-related factors and mTOR pathway-related proteins in SE rats and hippocampal neurons were detected. TUG1 was highly expressed in serum of SE patients, SE rats and neurons with epileptiform discharge. Inhibition of TUG1 relieved pathological injury, oxidative stress and inflammation and reduced neuronal apoptosis in SE rats, which were further verified in hippocampal neurons. TUG1 upregulated TIMP2 expression by targeting miR-421. Overexpressed miR-421 inhibited hippocampal neuronal apoptosis. TUG1 knockout inactivated the mTOR pathway via the miR-421/TIMP2 axis to relieve neuronal apoptosis, oxidative stress and inflammation in SE rats and hippocampal neurons. Taken together, these findings showed that downregulation of lncRNA TUG1 inhibited apoptosis of hippocampal neurons in SE rats, and attenuated oxidative stress and inflammation damage through regulating the miR-421/mTOR axis.


Assuntos
MicroRNAs/metabolismo , Neurônios , RNA Longo não Codificante/fisiologia , Estado Epiléptico/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Adolescente , Adulto , Animais , Animais Recém-Nascidos , Apoptose , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo , Neurônios/patologia , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Adulto Jovem
6.
Chin J Integr Med ; 26(7): 510-518, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31970676

RESUMO

OBJECTIVE: To evaluate the effect of baicalin on subarachnoid hemorrhage (SAH) in rats and explore the potential mechanisms. METHODS: Sprague-Dawley rats underwent experimental SAH and received treatment with baicalin at 10 or 50 mg/kg after 2 and 12 h of SAH. Neurological scores, brain water content, Evans-blue extravasation, and levels of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), myeloperoxidase (MPO), and malondialdehyde (MDA) were measured 24 h after SAH. Expression of nuclear factor erythroid-related factor 2 (Nrf2), NAD(P)H: quinone oxidoreductase 1 (NQO1), matrix metalloproteinase-9 (MMP-9), aquaporin 4 (AQP4), occludin, and zonulaoccludens-1 (ZO-1) were detected in the brain by Western blot. Heme oxygenase-1 (HO-1) was detected by quantitative polymerase chain reaction, and tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were assessed by enzyme-linked immunosorbent assay. RESULTS: Baicalin attenuated EBI 24 h after SAH in rats (P<0.05). Baicalin elevated neurological scores, GSH-Px, SOD, and increased the expression of Nrf2, NQO1, HO-1, occludin, and ZO-1 in SAH rats (P<0.05 or P<0.01). Baicalin reduced MPO, MDA, and the expression of MMP-9, AQP4, TNF-α, and IL-1ß (P<0.05 or P<0.01). CONCLUSION: Baicalin reduced SAH-induced EBI, partially via activation of the Nrf2/HO-1 pathway and inhibition of MMP-9 and AQP4.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Flavonoides/farmacologia , Hemorragia Subaracnóidea/tratamento farmacológico , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley
7.
Neural Regen Res ; 15(5): 936-943, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31719260

RESUMO

Hippocampal neurons undergo various forms of cell death after status epilepticus. Necrostatin-1 specifically inhibits necroptosis mediated by receptor interacting protein kinase 1 (RIP1) and RIP3 receptors. However, there are no reports of necroptosis in mouse models of status epilepticus. Therefore, in this study, we investigated the effects of necrostatin-1 on hippocampal neurons in mice with status epilepticus, and, furthermore, we tested different amounts of the compound to identify the optimal concentration for inhibiting necroptosis and apoptosis. A mouse model of status epilepticus was produced by intraperitoneal injection of kainic acid, 12 mg/kg. Different concentrations of necrostatin-1 (10, 20, 40, and 80 µM) were administered into the lateral ventricle 15 minutes before kainic acid injection. Hippocampal damage was assessed by hematoxylin-eosin staining 24 hours after the model was successfully produced. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining, western blot assay and immunohistochemistry were used to evaluate the expression of apoptosis-related and necroptosis-related proteins. Necrostatin-1 alleviated damage to hippocampal tissue in the mouse model of epilepsy. The 40 µM concentration of necrostatin-1 significantly decreased the number of apoptotic cells in the hippocampal CA1 region. Furthermore, necrostatin-1 significantly downregulated necroptosis-related proteins (MLKL, RIP1, and RIP3) and apoptosis-related proteins (cleaved-Caspase-3, Bax), and it upregulated the expression of anti-apoptotic protein Bcl-2. Taken together, our findings show that necrostatin-1 effectively inhibits necroptosis and apoptosis in mice with status epilepticus, with the 40 µM concentration of the compound having an optimal effect. The experiments were approved by the Animal Ethics Committee of Fujian Medical University, China (approval No. 2016-032) on November 9, 2016.

8.
Exp Ther Med ; 12(3): 1405-1411, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27588062

RESUMO

The aim of the present study was to determine the effect of baicalin on the expression of miR-497 and its target B-cell lymphoma-2 (Bcl-2) in the hippocampus of kainic acid (KA)-induced epileptic mice. To establish status epilepticus (SE), 0.1 µg/5 µl KA was injected into the lateral cerebral ventricle in mice, which then received an intraperitoneal injection of baicalin (100 mg/kg) after 1 and 8 h. Hematoxylin and eosin staining was used to observe the pathological changes in morphology and neuronal apoptosis was determined by terminal transferase-mediated dUTP nick end-labeling staining. Western blot analysis was used to detect the expression of Bcl-2 and cleaved caspase-3 proteins in the hippocampus, while reverse transcription-quantitative polymerase chain reaction was used to quantify hippocampal miR-497 expression. The results showed that baicalin significantly attenuated neuronal damage and apoptosis in the hippocampus 72 h after SE. In addition, baicalin decreased SE-induced expression of miR-497 and cleaved caspase-3 protein, while upregulating the expression of Bcl-2 protein. In conclusion, the present results suggest that baicalin possesses potent antiapoptotic properties and attenuates hippocampal injury in mice after SE, which may be associated with the downregulation of miR-497 and cleaved caspase-3 and the upregulation of Bcl-2.

9.
Neurochem Res ; 41(10): 2779-2787, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27380038

RESUMO

Previous studies from our laboratories showed that an anti-inflammatory drug, 5-lipoxygenase inhibitor zileuton, attenuates ischemic brain damage via inhibiting inflammatory reaction. However, it was elusive whether zileuton attenuates inflammatory reaction and ischemic brain damage through the modulation of PI3K/Akt signaling pathway. In the present study, we, for the first time, investigated whether PI3K/Akt pathway was involved in zileuton's anti-inflammatory and neuroprotective properties against brain damage following experimental ischemic stroke. Adult male Sprague-Dawley rats underwent middle cerebral artery occlusion (MCAO), then received treatment with zileuton or vehicle after the onset of ischemia. LY294002 was injected intracerebroventricularly to inhibit the activation of PI3K/Akt signaling pathway selectively. Neurological deficit scores, cerebral infarct volume, morphological characteristic and cerebral water content were assessed 24 h after cerebral ischemia. The enzymatic activity of myeloperoxidase (MPO) was measured 24 h after cerebral ischemia. Expression of p-Akt, t-Akt and COX-2 in ischemic brain were determined by western blot. NF-κB p65 immuno-positive cells in ischemic brain were detected 24 h after cerebral ischemia. The content of TNF-α in blood was examined by ELISA. 5-LOX inhibitor zileuton significantly reduces neurological deficit scores, cerebral infarct volume, cerebral water content, ischemic neuronal injury and the enzymatic activity of MPO, all of which were abolished by LY294002 administration. Zileuton significantly up-regulates the expression of p-Akt, which was inhibited by LY294002 administration. Zileuton significantly down-regulates the over-expression of NF-κB p65 and COX-2, and attenuates the release of TNF-α, all of which were disminished by LY294002 administration. These results suggest that zileuton attenuates ischemic brain damage by inhibiting inflammatory reaction through the activation of PI3K/Akt signaling pathway.


Assuntos
Isquemia Encefálica/metabolismo , Encéfalo/efeitos dos fármacos , Hidroxiureia/análogos & derivados , Inibidores de Lipoxigenase/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Araquidonato 5-Lipoxigenase/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/tratamento farmacológico , Hidroxiureia/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Inflamação/metabolismo , Masculino , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley
10.
J Mol Neurosci ; 57(4): 538-45, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26342279

RESUMO

Our previous studies demonstrated that propofol protects rat brain against focal cerebral ischemia. However, whether propofol attenuates early brain injury after subarachnoid hemorrhage in rats remains unknown until now. The present study was performed to evaluate the effect of propofol on early brain injury after subarachnoid hemorrhage in rats and further explore the potential mechanisms. Sprague-Dawley rats underwent subarachnoid hemorrhage (SAH) by endovascular perforation then received treatment with propofol (10 or 50 mg/kg) or vehicle after 2 and 12 h of SAH. SAH grading, neurological scores, brain water content, Evans blue extravasation, the myeloperoxidase activity, and malondialdehyde (MDA) content were measured 24 h after SAH. Expression of nuclear factor erythroid-related factor 2 (Nrf2), nuclear factor-kappa B (NF-κB) p65, and aquaporin 4 (AQP4) expression in rat brain were detected by Western blot. Expression of cyclooxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9) were determined by reverse transcription-polymerase chain reaction (RT-PCR). Expressions of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were assessed by ELISA. Neurological scores, brain water content, Evans blue extravasation, the myeloperoxidase activity, and MDA content were significantly reduced by propofol. Furthermore, expression of Nrf2 in rat brain was upregulated by propofol, and expression of NF-κB p65, AQP4, COX-2, MMP-9, TNF-α, and IL-1ß in rat brain were attenuated by propofol. Our results demonstrated that propofol improves neurological scores, reduces brain edema, blood-brain barrier (BBB) permeability, inflammatory reaction, and lipid peroxidation in rats of SAH. Propofol exerts neuroprotection against SAH-induced early brain injury, which might be associated with the inhibition of inflammation and lipid peroxidation.


Assuntos
Propofol/uso terapêutico , Hemorragia Subaracnóidea/tratamento farmacológico , Animais , Aquaporina 4/genética , Aquaporina 4/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Propofol/farmacologia , Ratos , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
11.
Neurochem Res ; 36(11): 2022-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21678122

RESUMO

Focal cerebral ischemia results in an increased expression of matrix metalloproteinase-9 (MMP-9), which induces vasogenic brain edema via disrupting the blood-brain barrier (BBB) integrity. Recent studies from our laboratory showed that baicalin reduces ischemic brain damage by inhibiting inflammatory reaction and neuronal apoptosis in a rat model of focal cerebral ischemia. In the present study, we first explored the effect of baicalin on the neuronal damage, brain edema and BBB permeability, then further investigated its potential mechanisms. Sprague-Dawley rats underwent permanent middle cerebral artery occlusion (MCAO). Baicalin was administrated by intraperitoneally injected twice at 2 and 12 h after the onset of MCAO. Neuronal damage, brain edema and BBB permeability were measured 24 h following MCAO. Expression of MMP-9 protein and mRNA were determined by western blot and RT-PCR, respectively. Expression of tight junction protein (TJP) occludin was detected by western blot. Neuronal damage, brain edema and BBB permeability were significantly reduced by baicalin administration following focal cerebral ischemia. Elevated expression of MMP-9 protein and mRNA were significantly down-regulated by baicalin administration. In addition, MCAO caused the decreased expression of occludin, which was significantly up-regulated by baicalin administration. Our study suggested that baicalin reduces MCAO-induced neuronal damage, brain edema and BBB permeability, which might be associated with the inhibition of MMP-9 expression and MMP-9-mediated occludin degradation.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Isquemia Encefálica/fisiopatologia , Flavonoides/farmacologia , Infarto da Artéria Cerebral Média/fisiopatologia , Metaloproteinase 9 da Matriz/biossíntese , Animais , Edema Encefálico/etiologia , Isquemia Encefálica/complicações , Masculino , Proteínas de Membrana/metabolismo , Ocludina , Permeabilidade/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
12.
Zhonghua Zhong Liu Za Zhi ; 33(1): 70-5, 2011 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-21575470

RESUMO

OBJECTIVE: To explore an effective method for further improving the surgical results of treatment of olfactory groove meningiomas. METHODS: Sixty seven cases of olfactory groove meningiomas were treated by microneurosurgery, among which fifty seven were de novo cases, eight were recurrent tumors and the other two re-recurrent cases. Modified Derome approach was used in 12 cases, bilateral subfrontal approach in 28 cases, modified pterional approach in 21 cases and unilateral subfrontal approach in six cases. Tumors were resected microsurgically with radical removal of invaded dura, bone, and paranasal sinus mucosa. Reconstruction was performed in patients with skull base defect. RESULTS: Simpson grade I removal was accomplished in 59 cases, grade II in seven cases and grade IV in one case. Among 57 patients with de novo tumor, Simpson I resection was accomplished in 54 cases. Postoperative rhinorrhea and intracranial infection occurred in one case and was cured after temporal lumbar CSF drainage and antibiotic therapy. Two patients (2.9%) died within one month after operation, i.e.one aged patient of heart failure and the other of severe hypothalamus complication. Forty seven patients (72.3%) were followed up from one to ten years with an average of five years and four months. With the exception of two cases died, among the alive 45 patients, there were only three patients with tumor recurrence, which had undergone Simpson II or IV tumor resection. No recurrence was found in cases with Simpson I tumor removal. Previous blurred vision was not improved in three patients, hemiparalysis in two patients, and the other patients recovered well, resuming previous jobs or being able to take care themselves. CONCLUSIONS: Total tumor removal (Simpson I) should be the surgical goal for treatment of olfactory groove meningiomas, especially for de novo cases. An appropriate approach is fundamental in the effort to remove an OGM totally. Appropriate anterior skull base reconstruction with vascularized material is important and mandatory.


Assuntos
Neoplasias Meníngeas/cirurgia , Meningioma/cirurgia , Microcirurgia/métodos , Adulto , Idoso , Rinorreia de Líquido Cefalorraquidiano/etiologia , Dura-Máter/patologia , Dura-Máter/cirurgia , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética , Masculino , Neoplasias Meníngeas/diagnóstico , Neoplasias Meníngeas/patologia , Meningioma/diagnóstico , Meningioma/patologia , Microcirurgia/efeitos adversos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Seios Paranasais/patologia , Seios Paranasais/cirurgia , Procedimentos de Cirurgia Plástica , Base do Crânio/patologia , Base do Crânio/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA