Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; : e2308098, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37777858

RESUMO

Radioprotective agents hold clinical promises to counteract off-target adverse effects of radiation and benefit radiotherapeutic outcomes, yet the inability to control drug transport in human organs poses a leading limitation. Based upon a validated rank-based multigene signature model, radiosensitivity indices are evaluated of diverse normal organs as a genomic predictor of radiation susceptibility. Selective ORgan-Targeting (SORT) hafnium oxide nanoparticles (HfO2 NPs) are rationally designed via modulated synthesis by α-lactalbumin, homing to top vulnerable organs. HfO2 NPs like Hensify are commonly radioenhancers, but SORT HfO2 NPs exhibit surprising radioprotective effects dictated by unfolded ligands and Hf(0)/Hf(IV) redox couples. Still, the X-ray attenuation patterns allow radiological confirmation in target organs by dual-beam spectral computed tomography. SORT HfO2 NPs present potent antioxidant activities, catalytically scavenge reactive oxygen species, and mimic multienzyme catalytic activities. Consequently, SORT NPs rescue radiation-induced DNA damage in mouse and rabbit models and provide survival benefits upon lethal exposures. In addition to inhibiting radiation-induced mitochondrial apoptosis, SORT NPs impede DNA damage and inflammation by attenuating activated FoxO, Hippo, TNF, and MAPK interactive cascades. A universal methodology is proposed to reverse radioenhancers into radioprotectors. SORT radioprotective agents with image guidance are envisioned as compelling in personalized shielding from radiation deposition.

2.
Chem Asian J ; 18(9): e202300047, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36894498

RESUMO

The rapid efflux of Pt-based chemotherapeutics by cancer cells is one of the major causes of drug resistance in clinically available drugs. Therefore, both the high cellular uptake as well as adequate retention efficiency of an anticancer agent are important factors to overcome drug resistance. Unfortunately, rapid and efficient quantification of metallic drug concentration in individual cancer cells still remains a tricky problem. Herein, with the help of newly developed single cell inductively coupled plasma mass spectrometry (SC-ICP-MS), we have found that the well-known Ru(II)-based complex, Ru3, displayed remarkable intracellular uptake and retention efficiency in every single cancer cell with high photocatalytic therapeutic activity to overcome cisplatin resistance. Moreover, Ru3 has shown sensational photocatalytic anticancer properties with excellent in-vitro and in-vivo biocompatibility under light exposure.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Rutênio , Humanos , Detecção Precoce de Câncer , Antineoplásicos/farmacologia , Antineoplásicos/química , Cisplatino/química , Rutênio/farmacologia , Rutênio/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química
3.
Anal Chem ; 94(30): 10745-10753, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35857440

RESUMO

This study presents the new application of dual-analyte single particle inductively coupled plasma quadrupole mass spectrometry (spICP-QMS) to the discrimination and quantification of two typical soil nanoparticles (kaolinite and goethite nanoparticles, abbr. KNPs and GNPs) in three samples (SA, SB, and SC) with three detection events (Al unpaired event, Fe unpaired event, and paired event). SA was mainly composed of KNPs with a concentration of 28 443 ± 817 particle mL-1 and a mean particle size of 140.7 ± 0.2 nm. SB was mainly composed of GNPs with a concentration of 39 283 ± 702 particle mL-1 and a mean particle size of 141.8 ± 2.9. In SC, the concentrations of KNPs and GNPs were 22 4541 ± 1401 and 70 604 ± 1623 particle mL-1, respectively, and the mean particle sizes of KNPs and GNPs were 140.7 ± 0.2 and 60.2 ± 0.3 nm, respectively. The accuracy of dual-analyte spICP-QMS was determined by spiking experiments, comparing these results with the measurements of other techniques, analyzing the samples in different SA and SB proportions and in different SC concentrations. Our results demonstrated that the dual-analyte spICP-QMS is a promising approach to distinguishing different kinds of natural NPs in soils.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Espectrometria de Massas/métodos , Nanopartículas Metálicas/química , Nanopartículas/química , Tamanho da Partícula , Solo/química
4.
J Clin Lab Anal ; 36(8): e24574, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35766446

RESUMO

BACKGROUND: Aneuploidy of chromosomes 13, 18, 21, X, and Y can be detected by the quantitative fluorescence polymerase chain reaction (QF-PCR) performed with short tandem repeat (STR) markers. Although QF-PCR is designed to detect whole chromosome trisomy, the partial deletion or mosaic of chromosomes may also be detected. METHODS: Partial deletion or mosaic of chromosomes in three cases was detected by QF-PCR. Karyotyping and chromosome microarray analysis(CMA) were performed. We further reviewed the clinical utility of QF-PCR in detecting mosaicisms and deletions/duplications. RESULTS: QF-PCR demonstrated structurally abnormal 21, X, and Y chromosomes in primary amniotic cells. QF-PCR results in these three cases showed abnormal peak height/peak area, which could not be interpreted according to the kit instructions. QF-PCR results suggested that there were partial deletions or mosaicism, which were confirmed by karyotyping and CMA. CONCLUSION: In addition to detecting trisomies of whole chromosomes, QF-PCR can also detect deletion and mosaicism of chromosomes 13, 18, 21, X, and Y, which could suggest the presence of copy number variants (CNVs). Additional testing with genetic technologies, such as karyotyping or microarrays, is recommended when an uninformative pattern is suspected.


Assuntos
Aneuploidia , Mosaicismo , Feminino , Humanos , Cariotipagem , Reação em Cadeia da Polimerase/métodos , Gravidez , Diagnóstico Pré-Natal/métodos , Trissomia/diagnóstico , Trissomia/genética
5.
Angew Chem Int Ed Engl ; 61(23): e202202098, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35258153

RESUMO

Quantifying the content of metal-based anticancer drugs within single cancer cells remains a challenge. Here, we used single-cell inductively coupled plasma mass spectrometry to study the uptake and retention of mononuclear (Ir1) and dinuclear (Ir2) IrIII photoredox catalysts. This method allowed rapid and precise quantification of the drug in individual cancer cells. Importantly, Ir2 showed a significant synergism but not an additive effect for NAD(P)H photocatalytic oxidation. The lysosome-targeting Ir2 showed low dark toxicity in vitro and in vivo. Ir2 exhibited high photocatalytic therapeutic efficiency at 525 nm with an excellent photo-index in vitro and in tumor-bearing mice model. Interestingly, the photocatalytic anticancer profile of the dinuclear Ir2 was much better than the mononuclear Ir1, indicating for the first time that dinuclear metal-based photocatalysts can be applied for photocatalytic anticancer treatment.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Irídio/química , Lisossomos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA