Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 516
Filtrar
1.
Int J Ophthalmol ; 17(3): 420-434, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721513

RESUMO

AIM: To explore whether autophagy functions as a cellular adaptation mechanism in lens epithelial cells (LECs) under hyperosmotic stress. METHODS: LECs were treated with hyperosmotic stress at the concentration of 270, 300, 400, 500, or 600 mOsm for 6, 12, 18, 24h in vitro. Polymerase chain reaction (PCR) was employed for the mRNA expression of autophagy-related genes, while Western blotting detected the targeted protein expression. The transfection of stub-RFP-sens-GFP-LC3 autophagy-related double fluorescence lentivirus was conducted to detect the level of autophagy flux. Scanning electron microscopy was used to detect the existence of autolysosome. Short interfering RNA of autophagy-related gene (ATG) 7, transient receptor potential vanilloid (TRPV) 1 overexpression plasmid, related agonists and inhibitors were employed to their influence on autophagy related pathway. Flow cytometry was employed to test the apoptosis and intracellular Ca2+ level. Mitochondrial membrane potential was measured by JC-1 staining. The cell counting kit-8 assay was used to calculate the cellular viability. The wound healing assay was used to evaluate the wound closure rate. GraphPad 6.0 software was utilized to evaluate the data. RESULTS: The hyperosmotic stress activated autophagy in a pressure- and time-dependent manner in LECs. Beclin 1 protein expression and conversion of LC3B II to LC3B I increased, whereas sequestosome-1 (SQSTM1) protein expression decreased. Transient Ca2+ influx was stimulated caused by hyperosmotic stress, levels of mammalian target of rapamycin (mTOR) phosphorylation decreased, and the level of AMP-activated protein kinase (AMPK) phosphorylation increased in the early stage. Based on this evidence, autophagy activation through the Ca2+-dependent AMPK/mTOR pathway might represent an adaptation process in LECs under hyperosmotic stress. Hyperosmotic stress decreased cellular viability and accelerated apoptosis in LECs and cellular migration decreased. Inhibition of autophagy by ATG7 knockdown had similar results. TRPV1 overexpression increased autophagy and might be crucial in the occurrence of autophagy promoted by hyperosmotic stress. CONCLUSION: A combination of hyperosmotic stress and autophagy inhibition may be a promising approach to decrease the number of LECs in the capsular bag and pave the way for improving prevention of posterior capsular opacification and capsular fibrosis.

2.
Front Neurol ; 15: 1387260, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711554

RESUMO

Background: Autoimmune diseases have always been one of the difficult diseases of clinical concern. Because of the diversity and complexity of its causative factors, unclear occurrence and development process and difficult treatment, it has become a key disease for researchers to study. And the disease explored in this paper, anti-NMDA encephalitis, belongs to a common type of autoimmune encephalitis. However, the quality of articles and research hotspots in this field are not yet known. Therefore, in this field, we completed a bibliometric and visualization analysis from 2005 to 2023 in order to understand the research hotspots and directions of development in this field. Materials and methods: We searched the SCI-expanded databases using Web of Science's core databases on January 22, 2024 and used tools such as VOS viewer, Cite Space, and R software to visualize and analyze the authors, countries, journals, institutions, and keywords of the articles. Results: A total of 1,161 literatures were retrieved and analyzed in this study. China was the country with the most total publications, and USA and Spain were the most influential countries in the field of anti-NMDA encephalitis. University of Pennsylvania from USA was the institution with the highest number of publications. While Dalmau Josep is the most prolific, influential and contributing author who published one of the most cited articles in Lancet Neurology, which laid the foundation for anti-NMDA encephalitis research, the top three appearances of keyword analysis were: "antibodies", "diagnosis", and "autoimmune encephalitis." Conclusion: Bibliometric analysis shows that the number of studies on anti-NMDA encephalitis is generally increasing year by year, and it is a hot disease pursued by researchers. USA and Spain are leading in the field of anti-NMDA encephalitis, while China should continue to improve the quality of its own research. The suspected causes of anti-NMDA encephalitis other than ovarian teratoma and herpes simplex, the specific clinical manifestations that are not masked by psychiatric symptoms, the diagnostic modalities that are faster and more accurate than antibody tests, and the improvement of treatment modalities by evaluating prognosis of various types of patients are the hotspots for future research.

3.
J Biomech ; 169: 112154, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38768541

RESUMO

Estimating the elasticity of hydrogel phantoms in a cell culture plane is important for understanding the cell behavior in response to various types of mechanical stimuli. Hence, a noncontact tool for measuring the elastic properties of hydrogel phantoms in such three-dimensional cell cultures is required. A well-known method to determine the mechanical properties of hydrogels is the transient wave method. However, due to the multiple reflections of waves from the boundaries, a bigger cell culture plane or multiple directional filters may be required. In this study, we utilized reverberant shear wave elastography, which is based on the autocorrelation principle, to evaluate the shear wave speed in hydrogel samples within a culture dish. Numerical simulations were performed first to confirm the validity of the reverberant elastography method. Subsequently, we used this method to measure the wave speeds in hydrogel phantoms with different concentrations. Shear rheology tests were also performed, and their results were found to be in good agreement with the measured shear wave speeds. The proposed method could be useful for measuring the elasticity of tissues in tissue engineering applications in an inexpensive and noncontact manner.

4.
Nano Lett ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743576

RESUMO

Adhesion ability and interfacial thermal transfer capacity at soft/hard interfaces are of critical importance to a wide variety of applications, ranging from electronic packaging and soft electronics to batteries. However, these two properties are difficult to obtain simultaneously due to their conflicting nature at soft/hard interfaces. Herein, we report a polyurethane/silicon interface with both high adhesion energy (13535 J m-2) and low thermal interfacial resistance (0.89 × 10-6 m2 K W-1) by regulating hydrogen interactions at the interface. This is achieved by introducing a soybean-oil-based epoxy cross-linker, which can destroy the hydrogen bonds in polyurethane networks and meanwhile can promote the formation of hydrogen bonds at the polyurethane/silicon interface. This study provides a comprehensive understanding of enhancing adhesion energy and reducing interfacial thermal resistance at soft/hard interfaces, which offers a promising perspective to tailor interfacial properties in various material systems.

5.
Gels ; 10(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38786250

RESUMO

Intervertebral disc degeneration (IVDD) is a worldwide disease that causes low back pain and reduces quality of life. Biotherapeutic strategies based on tissue engineering alternatives, such as intervertebral disc scaffolds, supplemented by drug-targeted therapy have brought new hope for IVDD. In this study, to explore the role and mechanism of MnO2/GelMA composite hydrogels in alleviating IVDD, we prepared composite hydrogels with MnO2 and methacrylate gelatin (GelMA) and characterized them using compression testing and transmission electron microscopy (TEM). Annulus fibrosus cells (AFCs) were cultured in the composite hydrogels to verify biocompatibility by live/dead and cytoskeleton staining. Cell viability assays and a reactive oxygen species (ROS) probe were used to analyze the protective effect of the composite hydrogels under oxidative damage. To explore the mechanism of improving the microenvironment, we detected the expression levels of antioxidant and autophagy-related genes and proteins by qPCR and Western blotting. We found that the MnO2/GelMA composite hydrogels exhibited excellent biocompatibility and a porous structure, which promoted cell proliferation. The addition of MnO2 nanoparticles to GelMA cleared ROS in AFCs and induced the expression of antioxidant and cellular autophagy through the common SIRT1/NRF2 pathway. Therefore, the MnO2/GelMA composite hydrogels, which can improve the disc microenvironment through scavenging intracellular ROS and resisting oxidative damage, have great application prospects in the treatment of IVDD.

6.
J Mater Chem A Mater ; 12(15): 9184-9199, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38633215

RESUMO

A limiting factor for solid polymer electrolyte (SPE)-based Li-batteries is the functionality of the electrolyte decomposition layer that is spontaneously formed at the Li metal anode. A deeper understanding of this layer will facilitate its improvement. This study investigates three SPEs - polyethylene oxide:lithium tetrafluoroborate (PEO:LiBF4), polyethylene oxide:lithium bis(oxalate)borate (PEO:LiBOB), and polyethylene oxide:lithium difluoro(oxalato)borate (PEO:LiDFOB) - using a combination of electrochemical impedance spectroscopy (EIS), galvanostatic cycling, in situ Li deposition photoelectron spectroscopy (PES), and ab initio molecular dynamics (AIMD) simulations. Through this combination, the cell performance of PEO:LiDFOB can be connected to the initial SPE decomposition at the anode interface. It is found that PEO:LiDFOB had the highest capacity retention, which is correlated to having the least decomposition at the interface. This indicates that the lower SPE decomposition at the interface still creates a more effective decomposition layer, which is capable of preventing further electrolyte decomposition. Moreover, the PES results indicate formation of polyethylene in the SEI in cells based on PEO electrolytes. This is supported by AIMD that shows a polyethylene formation pathway through free-radical polymerization of ethylene.

7.
Front Plant Sci ; 15: 1333816, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633458

RESUMO

Low temperatures decrease the thidiazuron (TDZ) defoliation efficiency in cotton, while cyclanilide (CYC) combined with TDZ can improve the defoliation efficiency at low temperatures, but the mechanism is unknown. This study analyzed the effect of exogenous TDZ and CYC application on cotton leaf abscissions at low temperatures (daily mean temperature: 15°C) using physiology and transcriptomic analysis. The results showed that compared with the TDZ treatment, TDZ combined with CYC accelerated cotton leaf abscission and increased the defoliation rate at low temperatures. The differentially expressed genes (DEGs) in cotton abscission zones (AZs) were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to compare the enriched GO terms and KEGG pathways between the TDZ treatment and TDZ combined with CYC treatment. TDZ combined with CYC could induce more DEGs in cotton leaf AZs at low temperatures, and these DEGs were related to plant hormone and reactive oxygen species (ROS) pathways. CYC is an auxin transport inhibitor. TDZ combined with CYC not only downregulated more auxin response related genes but also upregulated more ethylene and jasmonic acid (JA) response related genes at low temperatures, and it decreased the indole-3-acetic acid (IAA) content and increased the JA and 1-aminocyclopropane-1-carboxylic acid (ACC) contents, which enhanced cotton defoliation. In addition, compared with the TDZ treatment alone, TDZ combined with CYC upregulated the expression of respiratory burst oxidase homologs (RBOH) genes and the hydrogen peroxide content in cotton AZs at low temperatures, which accelerated cotton defoliation. These results indicated that CYC enhanced the TDZ defoliation efficiency in cotton by adjusting hormone synthesis and response related pathways (including auxin, ethylene, and JA) and ROS production at low temperatures.

8.
Mikrochim Acta ; 191(5): 264, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622377

RESUMO

Silver nanoparticles supported on metal-organic framework (ZIF-67)-derived Co3O4 nanostructures (Ag NPs/Co3O4) were synthesized via a facile in situ reduction strategy. The resulting materials exhibited pH-switchable peroxidase/catalase-like catalytic activity. Ag NP doping greatly enhanced the catalytic activity of Ag NPs/Co3O4 towards 3,3',5,5'-tetramethylbenzidine (TMB) oxidation and H2O2 decomposition which were 59 times (A652 of oxTMB) and 3 times (A240 of H2O2) higher than that of ZIF-67, respectively. Excitingly, thiophanate-methyl (TM) further enhanced the peroxidase-like activity of Ag NPs/Co3O4 nanozyme due to the formation of Ag(I) species in TM-Ag NPs/Co3O4 and generation of more radicals resulting from strong interaction between Ag NPs and TM. The TM-Ag NPs/Co3O4 nanozyme exhibited lower Km and higher Vmax values towards H2O2 when compared with Ag NPs/Co3O4 nanozyme. A simple, bioelement-free colorimetric TM detection method based on Ag NPs/Co3O4 nanozyme via analyte-enhanced sensing strategy was successfully established with high sensitivity and selectivity. Our study demonstrated that hybrid noble metal NPs/MOF-based nanozyme can be a class of promising artificial nanozyme in environmental and food safety applications.


Assuntos
Cobalto , Nanopartículas Metálicas , Óxidos , Tiofanato , Nanopartículas Metálicas/química , Colorimetria/métodos , Peróxido de Hidrogênio/química , Prata/química , Peroxidases
9.
Proc Inst Mech Eng H ; 238(5): 537-549, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561625

RESUMO

Constructing surface topography with a certain roughness is a widely used, non-toxic, cost-effective and effective method for improving the microenvironment of cells, promoting the proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs), and promoting the osseointegration of grafts and further improving their biocompatibility under clinical environmental conditions. SIRT1 plays an important regulatory role in the osteogenic differentiation of bone marrow-derived MSCs (BM-MSCs). However, it remains unknown whether SIRT1 plays an important regulatory role in the osteogenic differentiation of BM-MSCs with regard to surface morphology. Polydimethylsiloxane (PDMS) with different surface morphologies were prepared using different grits of sandpaper. The value for BMSCs added on different surfaces was detected by cell proliferation assays. RT-qPCR and Western blotting were performed to detect SIRT1 activation and osteogenic differentiation of MSCs. Osteogenesis of MSCs was detected by alkaline phosphatase (ALP) and alizarin red S staining. SIRT1 inhibition experiments were performed to investigate the role of SIRT1 in the osteogenic differentiation of MSCs induced by surface morphology. We found that BM-MSCs have better value and osteogenic differentiation ability on a surface with roughness of PDMS-1000M. SIRT1 showed higher gene and protein expression on a PDMS-1000M surface with a roughness of 13.741 ± 1.388 µm. The promotion of the osteogenic differentiation of MSCs on the PDMS-1000M surface was significantly decreased after inhibiting SIRT1 expression. Our study demonstrated that a surface morphology with certain roughness can activate the SIRT1 pathway of MSCs and promote the osteogenic differentiation of BMSCs via the SIRT1 pathway.


Assuntos
Diferenciação Celular , Dimetilpolisiloxanos , Células-Tronco Mesenquimais , Osteogênese , Transdução de Sinais , Sirtuína 1 , Propriedades de Superfície , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Sirtuína 1/metabolismo , Sirtuína 1/genética , Osteogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos
10.
J Colloid Interface Sci ; 664: 500-510, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484518

RESUMO

The efficiency of CO2 photocatalytic reduction is severely limited by inefficient separation and sluggish transfer. In this study, spin polarization was induced and built-in electric field was strengthened via Co doping in the BiVO4 cell to boost photocatalytic CO2 reduction. Results showed that owing to the generation of spin-polarized electrons upon Co doping, carrier separation and photocurrent production of the Co-doped BiVO4 were enhanced. CO production during CO2 photocatalytic reduction from the Co-BiVO4 was 61.6 times of the BiVO4. Notably, application of an external magnetic field (100 mT) further boosted photocatalytic CO2 reduction from the Co-BiVO4, with 68.25 folds improvement of CO production compared to pristine BiVO4. The existence of a built-in electric field (IEF) was demonstrated through density functional theory (DFT) simulations and kelvin probe force microscopy (KPFM). Mechanism insights could be elucidated as follows: doping of magnetic Co into the BiVO4 resulted in increased the number of spin-polarized photo-excited carriers, and application of a magnetic field led to an augmentation of intrinsic electric field due to a dipole shift, thereby extending carrier lifetime and suppressing charges recombination. Additionally, HCOO- was a crucial intermediate in the process of CO2RR, and possible pathways for CO2 reduction were proposed. This study highlights the significance of built-in electric fields and the important role of spin polarization for promotion of photocatalytic CO2 reduction.

11.
Sci Total Environ ; 926: 171906, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38531455

RESUMO

Although the prevalence of microplastics in the atmosphere has recently received considerable attention, there is little information available regarding the distribution of atmospheric microplastics over oceanic regions. In this study, during the summer and autumn months of 2022, we investigated atmospheric microplastics in four marine regions off the eastern coast of mainland China, namely, the southern, middle, and northern regions of the Yellow Sea, and the Bohai Sea. The abundance of atmospheric microplastics in these regions ranged from 1.65 to 16.80 items/100 m3 during summer and from 0.38 to 14.58 items/100 m3 during autumn, although we detected no significant differences in abundance among these regions. Polyamide, chlorinated polyethylene, and polyethylene terephthalate were identified as the main types of plastic polymer. On the basis of meteorological data and backward trajectory model analyses, we established that the atmospheric microplastics detected during summer were mainly derived from the adjacent marine atmosphere and that over the continental landmass in the vicinity of the sampling area, whereas microplastics detected during autumn appear to have originated mainly from the northeast of China. By influencing the settlement and migration of microplastics, meteorological factors, such as relative humidity and wind speed, were identified as potential factors determining the distribution and characteristics of the detected microplastics. Our findings in this study, revealing the origin and fate of marine atmospheric microplastics, make an important contribution to our current understanding of the distribution and transmission of microplastics within the surveyed region and potentially worldwide.

12.
Biosens Bioelectron ; 254: 116221, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38513541

RESUMO

Antibiotics are widely used for treating bacterial infections. However, excessive or improper use of antibiotics can pose a serious threat to human health and water environments, and thus, developing cost-effective, portable and effective strategies to analyze and detect antibiotics is highly desired. Herein, we reported a responsive photonic hydrogel (RPH)-based optical biosensor (PPNAH) with superior recyclability for sensitive and colorimetric determination of a typical ß-lactam antibiotic penicillin G (PG) in water. This sensor was composed of poly(N-isopropylacrylamide-co-acrylamide) smart hydrogel with incorporated penicillinase and Fe3O4@SiO2 colloidal photonic crystals (CPCs). The sensor could translate PG concentration signals into changes in the diffraction wavelength and structural color of the hydrogel. It possessed high sensitivity and selectivity to PG and excellent detection performances for other two typical ß-lactam antibiotics. Most importantly, due to the unique thermosensitivity of the poly(N-isopropylacrylamide) moieties in the hydrogel, the PG-responded PPNAH sensor could be facilely regenerated via a simple physical method at least fifty times while without compromising its response performance. Besides, our sensor was suitable for monitoring the PG-contaminated environmental water and displayed satisfactory detection performances. Such a sensor possessed obvious advantages of superior recyclability, highly chemical stability, low production cost, easy fabrication, wide range of visual detection, simple and intuitive operation for PG detection, and environmental-friendliness, which holds great potential in sensitive and colorimetric detection of the PG residues in polluted water.


Assuntos
Acrilamidas , Resinas Acrílicas , Técnicas Biossensoriais , Hidrogéis , Humanos , Hidrogéis/química , Penicilinase , Acrilamida , Colorimetria , Dióxido de Silício , Técnicas Biossensoriais/métodos , Penicilina G , Antibacterianos/análise , Água
13.
Biosens Bioelectron ; 254: 116233, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38518563

RESUMO

Intracellular microenvironment (viscosity and polarity) and peroxynitrite ions (ONOO-) are involved in maintaining cell morphology, cell function, and signaling so that it is crucial to explore their level changes in vitro and vivo. In this work, we designed and synthesized a mitochondria-targeted fluorescence probe XBL for monitoring the dynamic changes of viscosity, polarity, and ONOO- based on TICT and ICT mechanism. The fluorescence spectra showed obvious changes for polarity at 500 nm as well as ONOO- and viscosity at 660 nm, respectively. The XBL can image simultaneously viscosity, polarity, and ONOO- in cells, and the results showed excess ONOO- leaded to the increase of viscosity in mitochondrial. The ferroptosis process was accompanied by increase of intracellular viscosity and ONOO- levels (or decrease of polarity), which allowed us to better understand the relevant physiological and pathological processes. The XBL can distinguish normal cells and cancerous cells by the fluorescence intensity changes in green and red channels, and image viscosity in inflamed mice. Thus, XBL can provided the chemical tool to understand the physiological and pathological mechanisms of disease by simultaneous detection of viscosity, polarity and ONOO-.


Assuntos
Técnicas Biossensoriais , Corantes Fluorescentes , Camundongos , Animais , Viscosidade , Células RAW 264.7 , Mitocôndrias , Ácido Peroxinitroso
14.
J Chin Med Assoc ; 87(5): 550-557, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38501787

RESUMO

BACKGROUND: Effective postoperative pain management is vital in cardiac surgery to prevent opioid dependency and respiratory complications. Previous studies on the erector spinae plane (ESP) block have focused on single-shot applications or immediate postoperative outcomes. This study evaluates the efficacy of continuous ESP block vs conventional care in reducing opioid consumption and enhancing respiratory function recovery postcardiac surgery over 72 hours. METHODS: A retrospective study at a tertiary hospital (January 2021-July 2022) included 262 elective cardiac surgery patients. Fifty-three received a preoperative ESP block, matched 1:1 with a control group (n = 53). The ESP group received 0.5% ropivacaine intraoperatively and 0.16% ropivacaine every 4 hours postoperatively. Outcomes measured were cumulative oral morphine equivalent (OME) dose within 72 hours postextubation, daily maximum numerical rating scale (NRS) ≥3, incentive spirometry volume, and %baseline performance, stratified by surgery type (sternotomy or thoracotomy). RESULTS: Significant OME reduction was observed in the ESP group (sternotomy: median decrease of 113 mg, 95% CI: 60-157.5 mg, p < 0.001; thoracotomy: 172.5 mg, 95% CI: 45-285 mg, p = 0.010). The ESP group also had a lower risk of daily maximum NRS ≥3 (adjusted OR sternotomy: 0.22, p < 0.001; thoracotomy: 0.07, p < 0.001), a higher incentive spirometry volumes (sternotomy: mean increase of 149 mL, p = 0.019; thoracotomy: 521 mL, p = 0.017), and enhanced spirometry %baseline (sternotomy: mean increase of 11.5%, p = 0.014; thoracotomy: 26.5%, p < 0.001). CONCLUSION: Continuous ESP block was associated with a reduction of postoperative opioid requirements, lower instances of pain scores ≥3, and improve incentive spirometry performance following cardiac surgery. These benefits appear particularly prominent in thoracotomy patients. Further prospective studies with larger sample size are required to validate these findings.


Assuntos
Analgésicos Opioides , Procedimentos Cirúrgicos Cardíacos , Bloqueio Nervoso , Dor Pós-Operatória , Espirometria , Humanos , Estudos Retrospectivos , Analgésicos Opioides/administração & dosagem , Masculino , Feminino , Pessoa de Meia-Idade , Bloqueio Nervoso/métodos , Idoso , Dor Pós-Operatória/prevenção & controle , Músculos Paraespinais , Estudos de Coortes
15.
Environ Res ; 251(Pt 2): 118719, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38490622

RESUMO

In southern China, winter green manure is widely used in rice cropping systems for improving grain yields and soil fertility. Cd pollution has recently been reported in some of these paddy fields. Research on the in-depth understanding of how green manuring affects Cd absorption in rice is limited. This study aimed to investigate the impacts of different green manures, including single plantation and mixed plantation on the absorption of Cd by rice and explore the underlying mechanisms. Pot experiments demonstrated that compared with winter fallow-rice, green manuring treatments considerably decreased rice Cd content, promoted the conversion of bioavailable Cd fraction into a more stable form, induced the formation of iron plaque, and increased the content of humic-like fraction (HF) in soil dissolved organic matter (DOM). Treatment with mixed plantation resulted in a greater decrease in rice Cd content and an increase in HF and iron plaque contents than single plantation. Hydroponic experiments confirmed that both iron plaque and green manure-derived DOM significantly reduced the Cd content in rice seedlings. In conclusion, green manure incorporation is an efficient measure for the safe utilization of Cd-contaminated soil, and mixed plantation of different green manures exerts stronger effects.

16.
RSC Adv ; 14(8): 5184-5192, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38332797

RESUMO

Acquiring cost-effective, high-performance, non-precious metal catalysts is crucial for substituting precious metal catalysts in the oxygen reduction reaction (ORR) to ensure sustainable energy conversion. Herein, we present a preparation strategy for a high-performance Cu-Fe-CN-3 electrocatalyst characterized via X-ray diffraction (XRD), Raman spectroscopy, Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analyses. The results demonstrated that the incorporation of Cu and Fe into Black Pearls' carbon black (BP2000) and the strong synergistic effect between Fe and Cu contributed to the enhancement of active sites for the ORR. Electrochemical characterization revealed that the Cu-Fe-CN-3 catalyst synthesized by mixing Cu and Fe in a molar ratio of 3 : 1 exhibits superior catalytic activity for the ORR. The ORR performance of the Cu-Fe-CN-3 catalyst in an alkaline electrolyte (E1/2 0.867 V vs. RHE) surpassed that of Pt/C (E1/2 0.841 V vs. RHE), and the assembled aluminum-air battery demonstrated superior voltage stability compared to Pt/C under the same current density. After 2000 cycles, the E1/2 of the Cu-Fe-CN-3 catalyst exhibited a slight negative shift by 5 mV, which was better than the activity loss of the Pt/C catalyst (12 mV). At the same current density, the average discharge platform of Al-air batteries with the Cu-Fe-CN-3 catalyst was better than that of the commercial Pt/C catalyst. Therefore, the prepared Cu-Fe-CN-3 electrocatalyst exhibits great potential as an efficient ORR catalyst in fuel cells.

17.
Reprod Sci ; 31(5): 1373-1384, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38228975

RESUMO

Early spontaneous abortion (ESA) is a common adverse pregnancy outcome mainly attributed to embryo chromosomal abnormalities. However, as a quantitative marker, whether the anti-Müllerian hormone (AMH) can reflect oocyte quality is still controversial. By integrating biological evidence and adjusting many cofounders, this study aimed to clarify the controversies about the association between AMH and ESA caused by embryo aneuploidy during assisted reproductive technology (ART) treatment. We strictly preselected 988 patients receiving first ART treatment for analyzing clinical data, while 55 of them acquired chorionic villi karyotype results. In addition, 373 biopsied embryos from 126 patients receiving preimplantation genetic diagnosis (PGT) were tracked to compare embryo karyotypes. Univariate and multiple factor regressions were applied to analyze the risk factors leading to ESA. As covariates unadjusted, AMH (odds ratio 0.87, 95% CI 0.82-0.93) was the significant variable contributing to ESA. However, AMH played no significant role in the following regression models after age was adjusted. Also, AMH had no significant association with ESA in most age-adjusted subgroups, except in the male factors engaged subgroup. Additionally, compared to the patients with euploid chorionic villi karyotypes, those with aneuploid karyotypes were older and acquired fewer oocytes, yet their AMH levels were not significantly different. Furthermore, the embryo aneuploidy was independent of AMH while associated with maternal age, retrieved oocyte number, and embryo quality. This study suggested that AMH was unassociated with the ESA caused by embryo aneuploidy in ART therapy. As a critical cofounder, age remains the variable closely related to ESA.


Assuntos
Aborto Espontâneo , Hormônio Antimülleriano , Técnicas de Reprodução Assistida , Humanos , Hormônio Antimülleriano/sangue , Feminino , Adulto , Aborto Espontâneo/sangue , Gravidez , Técnicas de Reprodução Assistida/efeitos adversos , Estudos de Casos e Controles , Aneuploidia , Masculino , Diagnóstico Pré-Implantação/métodos
18.
Orthop Surg ; 16(2): 289-302, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38174410

RESUMO

The knee is the most complex joint in the human body, including bony structures like the femur, tibia, fibula, and patella, and soft tissues like menisci, ligaments, muscles, and tendons. Complex anatomical structures of the knee joint make it difficult to conduct precise biomechanical research and explore the mechanism of movement and injury. The finite element model (FEM), as an important engineering analysis technique, has been widely used in many fields of bioengineering research. The FEM has advantages in the biomechanical analysis of objects with complex structures. Researchers can use this technology to construct a human knee joint model and perform biomechanical analysis on it. At the same time, finite element analysis can effectively evaluate variables such as stress, strain, displacement, and rotation, helping to predict injury mechanisms and optimize surgical techniques, which make up for the shortcomings of traditional biomechanics experimental research. However, few papers introduce what material properties should be selected for each anatomic structure of knee FEM to meet different research purposes. Based on previous finite element studies of the knee joint, this paper summarizes various modeling strategies and applications, serving as a reference for constructing knee joint models and research design.


Assuntos
Fêmur , Articulação do Joelho , Humanos , Análise de Elementos Finitos , Articulação do Joelho/cirurgia , Tíbia , Patela/fisiologia , Fenômenos Biomecânicos
19.
RSC Adv ; 14(2): 863-871, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38174275

RESUMO

Photo-responsive nanoporous polymer films (AZOF-R(NC6)) have been developed by a template method based on a hydrogen-bonding supramolecular liquid crystal (LC) and a light-sensitive azobenzene LC crosslinker in this work. Anionic nanopores were obtained after the removal of template NC6 using KOH solution. The AZOF-R(NC6) demonstrates charge-selective dye adsorption and the maximum adsorption capacity for Rh6G is 504.6 mg g-1. The AZOF-R(NC6) film without UV light treatment shows a 32% higher adsorption capacity for Rh6G than the AZOF-R(NC6) film treated with UV light within the initial 10 min. In addition, UV light can trigger the release of the adsorbed dye from the polymer film due to the pore size change arising from the trans-cis isomerization. Besides, the used polymer film can be effectively regenerated using a HCl solution. Such functional polymer films with highly ordered nanopores and photo-responsive properties hold great promise in selective adsorption and mass separations.

20.
Biomolecules ; 14(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38254674

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive and fatal breast cancer subtype. Nowadays, chemotherapy remains the standard treatment of TNBC, and immunotherapy has emerged as an important alternative. However, the high rate of TNBC recurrence suggests that new treatment is desperately needed. Schisandrin B (Sch B) has recently revealed its anti-tumor effects in cancers such as cholangiocarcinoma, hepatoma, glioma, and multi-drug-resistant breast cancer. However, there is still a need to investigate using Sch B in TNBC treatment. Interleukin (IL)-1ß, an inflammatory cytokine that can be expressed and produced by the cancer cell itself, has been suggested to promote BC proliferation and progression. In the current study, we present evidence that Sch B can significantly suppress the growth, migration, and invasion of TNBC cell lines and patient-derived TNBC cells. Through inhibition of inflammasome activation, Sch B inhibits interleukin (IL)-1ß production of TNBC cells, hindering its progression. This was confirmed using an NLRP3 inhibitor, OLT1177, which revealed a similar beneficial effect in combating TNBC progression. Sch B treatment also inhibits IL-1ß-induced EMT expression of TNBC cells, which may contribute to the anti-tumor response.


Assuntos
Neoplasias dos Ductos Biliares , Lignanas , Compostos Policíclicos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR , Interleucina-1beta , Ductos Biliares Intra-Hepáticos , Ciclo-Octanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA