Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Clin Transl Med ; 14(8): e1738, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39095323

RESUMO

BACKGROUND: The therapeutic potential of immune checkpoint blockade (ICB) extends across various cancers; however, its effectiveness in treating hepatocellular carcinoma (HCC) is frequently curtailed by both inherent and developed resistance. OBJECTIVE: This research explored the effectiveness of integrating anlotinib (a broad-spectrum tyrosine kinase inhibitor) with programmed death-1 (PD-1) blockade and offers mechanistic insights into more effective strategies for treating HCC. METHODS: Using patient-derived organotypic tissue spheroids and orthotopic HCC mouse models, we assessed the effectiveness of anlotinib combined with PD-1 blockade. The impact on the tumour immune microenvironment and underlying mechanisms were assessed using time-of-flight mass cytometry, RNA sequencing, and proteomics across cell lines, mouse models, and HCC patient samples. RESULTS: The combination of anlotinib with an anti-PD-1 antibody enhanced the immune response against HCC in preclinical models. Anlotinib remarkably suppressed the expression of transferrin receptor (TFRC) via the VEGFR2/AKT/HIF-1α signaling axis. CD8+ T-cell infiltration into the tumour microenvironment correlated with low expression of TFRC. Anlotinib additionally increased the levels of the chemokine CXCL14, crucial for attracting CD8+ T cells. CXCL14 emerged as a downstream effector of TFRC, exhibiting elevated expression following the silencing of TFRC. Importantly, low TFRC expression was also associated with a better prognosis, enhanced sensitivity to combination therapy, and a favourable response to anti-PD-1 therapy in patients with HCC. CONCLUSIONS: Our findings highlight anlotinib's potential to augment the efficacy of anti-PD-1 immunotherapy in HCC by targeting TFRC and enhancing CXCL14-mediated CD8+ T-cell infiltration. This study contributes to developing novel therapeutic strategies for HCC, emphasizing the role of precision medicine in oncology. HIGHLIGHTS: Synergistic effects of anlotinib and anti-PD-1 immunotherapy demonstrated in HCC preclinical models. Anlotinib inhibits TFRC expression via the VEGFR2/AKT/HIF-1α pathway. CXCL14 upregulation via TFRC suppression boosts CD8+ T-cell recruitment. TFRC emerges as a potential biomarker for evaluating prognosis and predicting response to anti-PD-1-based therapies in advanced HCC patients.


Assuntos
Linfócitos T CD8-Positivos , Carcinoma Hepatocelular , Imunoterapia , Indóis , Neoplasias Hepáticas , Quinolinas , Receptores da Transferrina , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Quinolinas/administração & dosagem , Animais , Camundongos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Indóis/farmacologia , Indóis/uso terapêutico , Humanos , Imunoterapia/métodos , Receptores da Transferrina/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
2.
Front Immunol ; 14: 1197152, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37398672

RESUMO

Background: Hepatocellular carcinoma (HCC) is a highly prevalent and fatal cancer. The role of PANoptosis, a novel form of programmed cell death, in HCC is yet to be fully understood. This study focuses on identifying and analyzing PANoptosis-associated differentially expressed genes in HCC (HPAN_DEGs), aiming to enhance our understanding of HCC pathogenesis and potential treatment strategies. Methods: We analyzed HCC differentially expressed genes from TCGA and IGCG databases and mapped them to the PANoptosis gene set, identifying 69 HPAN_DEGs. These genes underwent enrichment analyses, and consensus clustering analysis was used to determine three distinct HCC subgroups based on their expression profiles. The immune characteristics and mutation landscape of these subgroups were evaluated, and drug sensitivity was predicted using the HPAN-index and relevant databases. Results: The HPAN_DEGs were mainly enriched in pathways associated with the cell cycle, DNA damage, Drug metabolism, Cytokines, and Immune receptors. We identified three HCC subtypes (Cluster_1, SFN+PDK4-; Cluster_2, SFN-PDK4+; Cluster_3, SFN/PDK4 intermediate expression) based on the expression profiles of the 69 HPAN_DEGs. These subtypes exhibited distinct clinical outcomes, immune characteristics, and mutation landscapes. The HPAN-index, generated by machine learning using the expression levels of 69 HPAN_DEGs, was identified as an independent prognostic factor for HCC. Moreover, the high HPAN-index group exhibited a high response to immunotherapy, while the low HPAN-index group showed sensitivity to small molecule targeted drugs. Notably, we observed that the YWHAB gene plays a significant role in Sorafenib resistance. Conclusion: This study identified 69 HPAN_DEGs crucial to tumor growth, immune infiltration, and drug resistance in HCC. Additionally, we discovered three distinct HCC subtypes and constructed an HPAN-index to predict immunotherapeutic response and drug sensitivity. Our findings underscore the role of YWHAB in Sorafenib resistance, presenting valuable insights for personalized therapeutic strategy development in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Sorafenibe , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Apoptose , Ciclo Celular
3.
J Cancer ; 12(23): 6937-6947, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34729096

RESUMO

Background: Current treatment options for intrahepatic cholangiocarcinoma (ICC) are limited by the lack of understanding of the disease pathogenesis. It has been known that mucin 1 (MUC1) is a cell surface mucin that highly expressed in various cancer tissues. However, its role in ICC has not been well studied. The purpose of this study was to investigate the clinical significance and biological function of MUC1 in ICC. Methods: qRT-PCR and western blot assays were performed to examine MUC1 expression. RNA-Seq (RNA Sequencing) s conducted to explore the RNA expression. A tissue microarray study including 214 ICC cases was also conducted to evaluate the clinical relevance and prognostic significance of MUC1. The role and underlying mechanisms of MUC1 in regulating cell growth and invasion were further explored both in vitro and in vivo models. Results: The mRNA and protein levels of MUC1 were significantly up-regulated in ICC compared to paired non-tumor tissues. Depletion of MUC1 in HCCC9810 cells significantly inhibited cell proliferation, migration and invasion in vitro and overexpression of MUC1 in RBE cells resulted in increased cell proliferation, migration and invasion. Both univariate and multivariate analysis revealed that the protein expression of MUC1 was associated with overall survival and relapse-free survival after tumor resection. Clinically, high MUC1 expression was more commonly observed in aggressive tumors. Further studies indicated that MUC1 exerted its function through activating Wnt/ ß-catenin pathway. Conclusions: Our data suggests that MUC1 promoted ICC progression via activating Wnt / ß-catenin pathway. This study not only deciphered the role of MUC in ICC pathogenesis, but also shed light upon identifying novel potential therapeutic targets.

4.
Environ Int ; 92-93: 373-87, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27132163

RESUMO

Chlorinated paraffins (CPs), complex mixtures of polychlorinated alkanes, are widely used in various industries and are thus ubiquitous in the receiving environment. The present study comprehensively reviewed the occurrence, fate and ecological risk of CPs in various environmental matrices in Asia. Releases from the production and consumption of CPs or CP-containing materials, wastewater discharge and irrigation, sewage sludge application, long-range atmospheric transport and aerial deposition have been found to be most likely sources and transport mechanisms for the dispersion of CPs in various environmental matrices, such as air, water, sediment, soil and biota. CPs can be bioaccumulated in biota and biomagnified through food webs, likely causing toxic ecological effects in organisms and posing health risks to humans. Inhalation, dust ingestion and dietary intake are strongly suggested as the major routes of human exposure. Research gaps are discussed to highlight the perspectives of future research to improve future efforts regarding the analysis of CPs, the environmental occurrence and elimination of CPs, the total environmental pressure, and the risks to organisms and populations.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais/química , Poluentes Ambientais/toxicidade , Parafina/química , Parafina/toxicidade , Ásia , Meio Ambiente , Humanos , Fatores de Risco , Esgotos , Solo , Águas Residuárias
5.
Huan Jing Ke Xue ; 31(6): 1568-74, 2010 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-20698274

RESUMO

A series of vanadium-doped magnetite (Fe3-x VxO4, x < 0.4) synthesized by an oxidation-precipitation method, were characterized using chemical analysis, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), as well as thermogravimetric and differential scanning calorimetry (TG-DSC) analyses. The obtained results show that the synthetic Fe3-x VxO4 has spinel structure while vanadium mostly replaces Fe3+ in the octahedral sites. The synthetic Fe3-x VxO4 is magnetic material, with crystal size ranging from 28 to 35 nm. The substitution of vanadium in the magnetite structure increases the amount of surface hydroxyls. The experimental adsorption results indicate that, in neutral pH condition, the maximum adsorption capacities of Fe3-x VxO4 increase obviously with the increase of vanadium concentration in magnetite while the adsorption isotherm complies well with the Langmuir model. The adsorption of methylene blue (MB) on Fe3-x VxO4 can get equilibrium in the first 25 min, supporting a pseudo-second order equation. Moreover, the rise of the solution pH value results in an increase of the adsorption capability of MB on Fe3-x VxO4.


Assuntos
Óxido Ferroso-Férrico/química , Azul de Metileno/isolamento & purificação , Vanádio/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/isolamento & purificação , Adsorção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA