Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Int ; 190: 108823, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908273

RESUMO

Microbially-mediated arsenic biotransformation plays a pivotal role in the biogeochemical cycling of arsenic; however, the presence of arsenic biotransformation genes (ABGs) in urban dust remains unclear. To investigate the occurrence and spatiotemporal distributions of ABGs, a total of one hundred and eighteen urban dust samples were collected from different districts of Xiamen city, China in summer and winter. Although inorganic arsenic species, including arsenate [As(V)] and arsenite [As(III)], were found to be predominant, the methylated arsenicals, particularly trimethylarsine oxide [TMAs(V)O] and dimethylarsenate [DMAs(V)], were detected in urban dust. Abundant ABGs were identified in urban dust via AsChip analysis (a high-throughput qPCR chip for ABGs), of which As(III) S-adenosylmethionine methyltransferase genes (arsM), As(V) reductase genes (arsC), As(III) oxidase genes (aioA), As(III) transporter genes (arsB), and arsenic-sensing regulator genes (arsR) were the most prevalent, collectively constituting more than 90 % of ABGs in urban dust. Microbes involved in arsenic methylation were assigned to bacteria (e.g., Actinomycetes and Alphaproteobacteria), archaea (e.g., Halobacteria), and eukaryotes (e.g., Chlamydomonadaceae) in urban dust via the arsM amplicon sequencing. Temperature, a season-dependent environmental factor, profoundly affected the abundance of ABGs and the composition of microbes involved in arsenic methylation. This study provides new insights into the presence of ARGs within the urban dust.


Assuntos
Arsênio , Biotransformação , Poeira , Poeira/análise , Arsênio/análise , Arsênio/metabolismo , China , Monitoramento Ambiental , Cidades , Bactérias/genética , Arsenicais/metabolismo , Arsenicais/análise , Archaea/genética
2.
Sci Total Environ ; 932: 173038, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38719055

RESUMO

Despite global concerns about metal(loid)s in atmospheric particulate matter (PM), the presence of metal(loid) resistance genes (MRGs) in PM remains unknown. Therefore, we conducted a comprehensive investigation of the metal(loid)s and associated MRGs in PMs in two seasons (summer and winter) in Xiamen, China. According to the geoaccumulation index (Igeo), most metal(loid)s, except for V and Mn, exhibited enrichment in PM, suggesting potential anthropogenic sources. By employing Positive Matrix Factorization (PMF) model, utilizing a dataset encompassing both total and bioaccessible metal(loid)s, along with backward trajectory simulations, traffic emissions were determined to be the primary potential contributor of metal(loid)s in summer, whereas coal combustion was observed to have a dominant contribution in winter. The major contributor to the carcinogenic risk of metal(loid)s in both summer and winter was predominantly attributed to coal combustion, which serves as the main source of bioaccessible Cr. Bacterial communities within PMs showed lower diversity and network complexity in summer than in winter, with Pseudomonadales being the dominant order. Abundant MRGs, including the As(III) S-adenosylmethionine methyltransferase gene (arsM), Cu(I)-translocating P-type ATPase gene (copA), Zn(II)/Cd(II)/Pb(II)-translocating P-type ATPase gene (zntA), and Zn(II)-translocating P-type ATPase gene (ziaA), were detected within the PMs. Seasonal variations were observed for the metal(loid) concentration, bacterial community structure, and MRG abundance. The bacterial community composition and MRG abundance within PMs were primarily influenced by temperature, rather than metal(loid)s. This research offers novel perspectives on the occurrence of metal(loid)s and MRGs in PMs, thereby contributing to the control of air pollution.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Material Particulado , Material Particulado/análise , Poluentes Atmosféricos/análise , China , Metais/análise , Estações do Ano , Atmosfera/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA