Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(20): 57571-57586, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36973620

RESUMO

Bermudagrass is a perennial herb with the potential to remediate Pb pollution in soils, and it has mechanical resistance to shearing. However, the effects of mowing on Pb absorption and accumulation in bermudagrass are still unclear. In this study, we investigated the effects of different quantities (0, 1, 2, 4 applications) of mowing treatments under 200 mg L-1 Pb application on Pb accumulation and transport in bermudagrass and explored the related mechanisms. Compared to the Pb treatment, all of the mowing treatments greatly decreased root Pb concentration/accumulation, significantly enhanced Pb concentrations/accumulations in stubble stems and stubble leaves, and ultimately promoted Pb enrichment and transport. Of the treatments in this study, two applications of mowing best promoted Pb enrichment, and four applications of mowing best promoted Pb transport efficiency. Furthermore, mowing mediated the microdistribution and physiological patterns of Pb in bermudagrass and affected the Pb transport by changing the subcellar distribution patterns and chemical forms of Pb in various tissues. Additionally, mowing promoted the transport of all mineral elements and showed a synergistic relationship with Pb absorption and transport. The change in mineral element metabolism patterns may be an important reason why mowing promoted Pb accumulation in bermudagrass. Our study provides the first comprehensive evidence regarding mowing facilitating the absorption, accumulation and transport of Pb in bermudagrass. Moderate mowing may be an effective strategy to assist in soil Pb remediation using bermudagrass.


Assuntos
Cynodon , Chumbo , Chumbo/metabolismo , Folhas de Planta , Solo , Minerais/metabolismo
2.
Ecotoxicol Environ Saf ; 241: 113755, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35689889

RESUMO

Lead (Pb) is one of the most harmful, toxic pollutants to the ecological environment and humans. Centipedegrass, a fast-growing warm-season turfgrass, is excellent for Pb pollution remediation. Exogenous low-molecular-weight organic acid (LMWOA) treatment is a promising approach for assisted phytoremediation. However, the effects of this treatment on the tolerance and Pb accumulation of centipedegrass are unclear. This study investigated these effects on the physiological growth response and Pb accumulation distribution characteristics of centipedegrass. Applications of 400 µM citric acid (CA), malic acid (MA) and tartaric acid (TA) significantly reduced membrane lipid peroxidation levels of leaves and improved biomass production of Pb-stressed plants. These treatments mainly increased peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) activities and enhanced free protein (Pro), ascorbic acid (AsA) and phytochelatins (PCs) contents, ultimately improving the Pb tolerance of centipedegrass. Their promoting effects decreased as follows: TA>CA>MA. All the treatments decreased root Pb concentrations and increased stem and leaf Pb concentrations, thus increasing total Pb accumulation and TF values. MA had the best and worst effects on Pb accumulation and Pb transportation, respectively. CA had the best and worst effects on Pb transportation and Pb accumulation, respectively. TA exhibited strong effects on both Pb accumulation and transport. Furthermore, all treatments changed the subcellular Pb distribution patterns and distribution models of the chemical forms of Pb in each tissue. The root Pb concentration was more highly correlated with the Pb subcellular fraction distribution pattern, while the stem and leaf Pb concentrations were more highly correlated with the distribution models of the chemical forms of Pb. Overall, TA improved plant Pb tolerance best and promoted both Pb absorption and transportation well and is considered the best candidate for Pb-contaminated soil remediation with centipedegrass. This study provides a new idea for Pb-contaminated soil remediation with centipedegrass combined with LMWOAs.


Assuntos
Chumbo , Poluentes do Solo , Antioxidantes/metabolismo , Biodegradação Ambiental , Ácido Cítrico/metabolismo , Humanos , Chumbo/metabolismo , Fitoquelatinas/metabolismo , Raízes de Plantas/metabolismo , Plantas/metabolismo , Solo , Poluentes do Solo/metabolismo , Estresse Fisiológico
3.
J Asian Nat Prod Res ; 14(7): 678-87, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22582804

RESUMO

Sinomenine (SN, 1) is a pure compound extracted from the Sinomenium acutum plant. We investigated the protective effects and mechanism of action of SN in a rat model of doxorubicin (DOX)-induced nephrosis. Nephrosis was induced by a single dose of 5 mg/kg DOX, and DOX-treated rats received a daily i.p. injection of 10 or 30 mg/kg SN, or saline (n = 6). Urine and serum biochemical parameters, serum TNF-α and IL-1ß levels, nephrin, podocin, α-actinin-4, and peroxisome proliferator-activated receptor-α (PPAR-α) protein expression, and renal ultrastructure were examined at day 28. Compound 1 significantly attenuated the effect of DOX on urine and serum biochemical parameters. Electron microscopy demonstrated that 1 suppressed DOX-induced increases in foot process width. Compared with those in control rats, nephrin, podocin, and PPAR-α protein expressions decreased in the glomeruli of DOX-treated rats, and this effect was significantly attenuated by 1. However, no appreciable alterations were observed in the expression level of α-actinin-4. DOX significantly increased serum TNF-α and IL-1ß compared with those in control rats, and 1 significantly reduced the serum levels of TNF-α and IL-1ß. SN ameliorates DOX-induced nephrotic syndrome in rats, resulting in a modulation of renal nephrin, podocin expression, and thereby protecting podocytes from injury.


Assuntos
Doxorrubicina/efeitos adversos , Doxorrubicina/farmacologia , Morfinanos/farmacologia , Nefrose/induzido quimicamente , Animais , Doxorrubicina/análise , Interleucina-1beta/análise , Interleucina-1beta/sangue , Interleucina-1beta/urina , Peptídeos e Proteínas de Sinalização Intracelular/análise , Peptídeos e Proteínas de Sinalização Intracelular/sangue , Peptídeos e Proteínas de Sinalização Intracelular/urina , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/metabolismo , Glomérulos Renais/ultraestrutura , Masculino , Proteínas de Membrana/análise , Proteínas de Membrana/sangue , Proteínas de Membrana/urina , Modelos Biológicos , Estrutura Molecular , Morfinanos/uso terapêutico , PPAR alfa/análise , PPAR alfa/sangue , PPAR alfa/urina , Ratos , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA