Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
JMIR Med Inform ; 12: e49978, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38904478

RESUMO

Background: The use of chronic disease information systems in hospitals and communities plays a significant role in disease prevention, control, and monitoring. However, there are several limitations to these systems, including that the platforms are generally isolated, the patient health information and medical resources are not effectively integrated, and the "Internet Plus Healthcare" technology model is not implemented throughout the patient consultation process. Objective: The aim of this study was to evaluate the efficiency of the application of a hospital case management information system in a general hospital in the context of chronic respiratory diseases as a model case. Methods: A chronic disease management information system was developed for use in general hospitals based on internet technology, a chronic disease case management model, and an overall quality management model. Using this system, the case managers provided sophisticated inpatient, outpatient, and home medical services for patients with chronic respiratory diseases. Chronic respiratory disease case management quality indicators (number of managed cases, number of patients accepting routine follow-up services, follow-up visit rate, pulmonary function test rate, admission rate for acute exacerbations, chronic respiratory diseases knowledge awareness rate, and patient satisfaction) were evaluated before (2019-2020) and after (2021-2022) implementation of the chronic disease management information system. Results: Before implementation of the chronic disease management information system, 1808 cases were managed in the general hospital, and an average of 603 (SD 137) people were provided with routine follow-up services. After use of the information system, 5868 cases were managed and 2056 (SD 211) patients were routinely followed-up, representing a significant increase of 3.2 and 3.4 times the respective values before use (U=342.779; P<.001). With respect to the quality of case management, compared to the indicators measured before use, the achievement rate of follow-up examination increased by 50.2%, the achievement rate of the pulmonary function test increased by 26.2%, the awareness rate of chronic respiratory disease knowledge increased by 20.1%, the retention rate increased by 16.3%, and the patient satisfaction rate increased by 9.6% (all P<.001), while the admission rate of acute exacerbation decreased by 42.4% (P<.001) after use of the chronic disease management information system. Conclusions: Use of a chronic disease management information system improves the quality of chronic respiratory disease case management and reduces the admission rate of patients owing to acute exacerbations of their diseases.

2.
Biochem Biophys Res Commun ; 533(4): 952-957, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33008592

RESUMO

Quercetin is a natural flavonoid which has been reported to be analgesic in different animal models of pain. However, the mechanism underlying the pain-relieving effects is still unclear. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play critical roles in controlling pacemaker activity in cardiac and nervous systems, making the channel a new target for therapeutic exploration. In this study, we explored a series of flavonoids for their modulation on HCN channels. Among all tested flavonoids, quercetin was the most potent inhibitor for HCN channels with an IC50 value of 27.32 ± 1.19 µM for HCN2. Furthermore, quercetin prominently left shifted the voltage-dependent activation curves of HCN channels and decelerated deactivation process. The results presented herein firstly characterize quercetin as a novel and potent inhibitor for HCN channels, which represents a novel structure for future drug design of HCN channel inhibitors.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/antagonistas & inibidores , Quercetina/farmacologia , Animais , Células COS , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos , Fenômenos Eletrofisiológicos , Flavonoides/química , Flavonoides/farmacologia , Flavonóis/química , Flavonóis/farmacologia , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Técnicas de Patch-Clamp , Canais de Potássio/genética , Canais de Potássio/metabolismo , Quercetina/química , Proteínas Recombinantes/efeitos dos fármacos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
3.
J Org Chem ; 84(24): 16262-16267, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31755260

RESUMO

I2/dimethyl sulfoxide (DMSO)-mediated C-S, S-N, and C-N bond cross-coupling cyclization reaction for the synthesis of 5-acyl-1,2,3-thiadiazoles from enaminones, tosylhydrazine, and elemental sulfur has been developed under transition-metal-free conditions. This strategy is operationally simple, compatible with a wide range of functional groups, and provides the desired products in moderate to excellent yields.

4.
ACS Chem Neurosci ; 10(6): 2786-2793, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-30935201

RESUMO

K2P potassium channels stabilize the resting membrane potential in nearly all cells and have been implicated in several neuronal, cardiovascular, and immune diseases. DCPIB, a known specific and potent inhibitor of volume-regulated anion channels (VRAC), has been reported to activate TREK1 and TREK2 in astrocytes and in vitro recently. In the present study, we demonstrated DCPIB also voltage dependently activated TRAAK besides TREK1/TREK2, showing DCPIB activated all TREK subfamily members. In contrast, the compound potently inhibited several other K2P channels with no voltage dependence, including TRESK, TASK1, and TASK3. DCPIB displayed superior selectivity toward TRESK with an IC50 of 0.14 µM, demonstrating at least 100-fold higher affinity over TREK1/TRAAK channels. Furthermore, the impaired ion selectivity filter region greatly impaired the activating effect of DCPIB on TREK1 but not the inhibitory effect of DCPIB on TRESK. This indicates distinct molecular determinants underlying the effect of DCPIB on TREK1 or TRESK channels. Our results showed that DCPIB played diverse effects on K2P channels and could be a useful tool for further investigating structure-function studies of K2P channels.


Assuntos
Ciclopentanos/farmacologia , Indanos/farmacologia , Canais de Potássio de Domínios Poros em Tandem/efeitos dos fármacos , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Animais , Células COS , Chlorocebus aethiops , Humanos
5.
Acta Pharmacol Sin ; 40(6): 746-754, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30315249

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play a critical role in controlling pacemaker activity in both heart and nervous system. Developing HCN channel inhibitors has been proposed to be an important strategy for the treatment of pain, heart failure, arrhythmias, and epilepsy. One HCN channel inhibitor, ivabradine, has been clinically approved for the treatment of angina pectoris and heart failure. In this study, we designed and synthesized eight alkanol amine derivatives, and assessed their effects on HCN channels expressed in COS7 cells using a whole-cell patch clamp method. Among them, compound 4e displayed the most potent inhibitory activity with an IC50 of 2.9 ± 1.2 µM at - 120 mV on HCN2 channel expressed in COS7 cells. Further analysis revealed that application of compound 4e (10 µM) caused a slowing of activation and a hyperpolarizing shift (ΔV1/2 = - 30.2 ± 2.9 mV, n = 5) in the voltage dependence of HCN2 channel activation. The inhibitory effect of compound 4e on HCN1 and HCN4 channel expressed in COS7 cells was less potent with IC50 of 17.2 ± 1.3 and 7.3 ± 1.2 µM, respectively. Besides, we showed that application of compound 4e (10 µM) inhibited Ih and action potential firing in acutely dissociated mouse small dorsal root ganglion neurons. Our study provides a new strategy for the design and development of potent HCN channel inhibitors.


Assuntos
Amino Álcoois/farmacologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/antagonistas & inibidores , Moduladores de Transporte de Membrana/farmacologia , Potenciais de Ação/efeitos dos fármacos , Amino Álcoois/síntese química , Amino Álcoois/química , Animais , Células COS , Chlorocebus aethiops , Humanos , Masculino , Moduladores de Transporte de Membrana/síntese química , Moduladores de Transporte de Membrana/química , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Canais de Potássio
6.
Br J Pharmacol ; 175(20): 3963-3975, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30098004

RESUMO

BACKGROUND AND PURPOSE: Carvedilol is a clinically effective ß-blocker broadly used for treating congestive heart failure (CHF), and several clinical trials have demonstrated that it shows a favourable effect compared with other ß-blockers in patients with CHF. The mechanism underlying this beneficial effect of carvedilol compared to other ß-blockers is not clearly understood. In addition to ß-blockers, inhibitors of hyperpolarization-activated cyclic nucleotide (HCN)-gated channels, which play a critical role in spontaneous rhythmic activity in the heart, have also been proposed to be suitable drugs for reducing heart rate and, therefore, beneficial for treating CHF. In the present study, we investigated the effect of carvedilol on HCN channels. EXPERIMENTAL APPROACH: Whole-cell patch-clamp recordings were used to assess the effect of carvedilol on currents from wild-type and mutant HCN1, HCN2 and HCN4 channels expressed in CHO cells. KEY RESULTS: Carvedilol was the only ß-blocker tested that showed inhibitory effects on the major sinoatrial HCN channel isoform HCN4. Carvedilol inhibited HCN4 in a concentration-dependent manner with an EC50 of 4.4 µM. In addition, carvedilol also inhibited HCN1 and HCN2 channels. Carvedilol blocked HCN channels by decelerating the rate of channel activation and increasing that of deactivation, and shifted the voltage-dependence of activation leftwards. Our data also showed that carvedilol, unlike other inhibitors of this channel (ivabradine and ZD7288), is not an 'open-channel' inhibitor of HCN4. CONCLUSIONS AND IMPLICATIONS: Carvedilol is a negative gating modulator of HCN channels. It represents a novel structure for future drug design of HCN channel inhibitors.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Carvedilol/farmacologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/antagonistas & inibidores , Animais , Células CHO , Cricetulus , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA