Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
PLoS One ; 19(5): e0304398, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38814913

RESUMO

OBJECTIVE: Minimally invasive surgery for spontaneous intracerebral hemorrhage is impeded by inadequate lysis of the target blood clot. Ultrasound is thought to expedite intravascular thrombolysis, thereby facilitating vascular recanalization. However, the impact of ultrasound on intracerebral blood clot lysis remains uncertain. This study aimed to explore the feasibility of combining ultrasound with urokinase to enhance blood clot lysis in an in vitro model of spontaneous intracerebral hemorrhage. METHODS: The blood clots were divided into four groups: control group, ultrasound group, urokinase group, and ultrasound + urokinase group. Using our experimental setup, which included a key-shaped bone window, we simulated a minimally invasive puncture and drainage procedure for spontaneous intracerebral hemorrhage. The blood clot was then irradiated using ultrasound. Blood clot lysis was assessed by weighing the blood clot before and after the experiment. Potential adverse effects were evaluated by measuring the temperature variation around the blood clot in the ultrasound + urokinase group. RESULTS: A total of 40 blood clots were observed, with 10 in each experimental group. The blood clot lysis rate in the ultrasound group, urokinase group, and ultrasound + urokinase group (24.83 ± 4.67%, 47.85 ± 7.09%, 61.13 ± 4.06%) was significantly higher than that in the control group (16.11 ± 3.42%) (p = 0.02, p < 0.001, p < 0.001). The blood clot lysis rate in the ultrasound + urokinase group (61.13 ± 4.06%) was significantly higher than that in the ultrasound group (24.83 ± 4.67%) (p < 0.001) or urokinase group (47.85 ± 7.09%) (p < 0.001). In the ultrasound + urokinase group, the mean increase in temperature around the blood clot was 0.26 ± 0.15°C, with a maximum increase of 0.38 ± 0.09°C. There was no significant difference in the increase in temperature regarding the main effect of time interval (F = 0.705, p = 0.620), the main effect of distance (F = 0.788, p = 0.563), or the multiplication interaction between time interval and distance (F = 1.100, p = 0.342). CONCLUSIONS: Our study provides evidence supporting the enhancement of blood clot lysis in an in vitro model of spontaneous intracerebral hemorrhage through the combined use of ultrasound and urokinase. Further animal experiments are necessary to validate the experimental methods and results.


Assuntos
Hemorragia Cerebral , Ativador de Plasminogênio Tipo Uroquinase , Ativador de Plasminogênio Tipo Uroquinase/farmacologia , Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Cerebral/terapia , Terapia por Ultrassom/métodos , Humanos , Trombose , Animais , Terapia Trombolítica/métodos , Fibrinólise/efeitos dos fármacos , Coagulação Sanguínea/efeitos dos fármacos
2.
Neurochem Int ; 177: 105744, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38663454

RESUMO

Traumatic brain injury (TBI) often results in persistent neurological dysfunction, which is closely associated with white matter injury. The mechanisms underlying white matter injury after TBI remain unclear. Ferritinophagy is a selective autophagic process that degrades ferritin and releases free iron, which may cause ferroptosis. Although ferroptosis has been demonstrated to be involved in TBI, it is unclear whether ferritinophagy triggers ferroptosis in TBI. Integrated stress response inhibitor (ISRIB) has neuroprotective properties. However, the effect of ISRIB on white matter after TBI remains uncertain. We aimed to investigate whether ferritinophagy was involved in white matter injury following TBI and whether ISRIB can mitigate white matter injury after TBI by inhibiting ferritinophagy. In this study, controlled cortical impact (CCI) was performed on rats to establish the TBI model. Ferritinophagy was measured by assessing the levels of nuclear receptor coactivator 4 (NCOA4), which regulates ferritinophagy, ferritin heavy chain 1(FTH1), LC3, ATG5, and FTH1 colocalization with LC3 in the white matter. Increased NCOA4 and decreased FTH1 were detected in our study. FTH1 colocalization with LC3 enhanced in the white matter after TBI, indicating that ferritinophagy was activated. Immunofluorescence co-localization results also suggested that ferritinophagy occurred in neurons and oligodendrocytes after TBI. Furthermore, ferroptosis was assessed by determining free iron content, MDA content, GSH content, and Perl's staining. The results showed that ferroptosis was suppressed by NCOA4 knockdown via shNCOA4 lentivirus infection, indicating that ferroptosis in TBI is triggered by ferritinophagy. Besides, NCOA4 deletion notably improved white matter injury following TBI, implying that ferritinophagy contributed to white matter injury. ISRIB treatment reduced the occurrence of ferritinophagy in neurons and oligodendrocytes, attenuated ferritinophagy-induced ferroptosis, and alleviated white matter injury. These findings suggest that NCOA4-mediated ferritinophagy is a critical mechanism underlying white matter injury after TBI. ISRIB holds promise as a therapeutic agent for this condition.


Assuntos
Lesões Encefálicas Traumáticas , Ferritinas , Coativadores de Receptor Nuclear , Ratos Sprague-Dawley , Substância Branca , Animais , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Substância Branca/metabolismo , Substância Branca/patologia , Substância Branca/efeitos dos fármacos , Coativadores de Receptor Nuclear/metabolismo , Coativadores de Receptor Nuclear/genética , Ferritinas/metabolismo , Masculino , Ratos , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
3.
J Neurotrauma ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38326935

RESUMO

Hemorrhagic progression of contusion (HPC) often occurs early in cerebral contusions (CC) patients, significantly impacting their prognosis. It is vital to promptly assess HPC and predict outcomes for effective tailored interventions, thereby enhancing prognosis in CC patients. We utilized the Attention-3DUNet neural network to semi-automatically segment hematomas from computed tomography (CT) images of 452 CC patients, incorporating 695 hematomas. Subsequently, 1502 radiomic features were extracted from 358 hematomas in 261 patients. After a selection process, these features were used to calculate the radiomic signature (Radscore). The Radscore, along with clinical features such as medical history, physical examinations, laboratory results, and radiological findings, was employed to develop predictive models. For prognosis (discharge Glasgow Outcome Scale score), radiomic features of each hematoma were augmented and fused for correlation. We employed various machine learning methodologies to create both a combined model, integrating radiomics and clinical features, and a clinical-only model. Nomograms based on logistic regression were constructed to visually represent the predictive procedure, and external validation was performed on 170 patients from three additional centers. The results showed that for HPC, the combined model, incorporating hemoglobin levels, Rotterdam CT score of 3, multi-hematoma fuzzy sign, concurrent subdural hemorrhage, international normalized ratio, and Radscore, achieved area under the receiver operating characteristic curve (AUC) values of 0.848 and 0.836 in the test and external validation cohorts, respectively. The clinical model predicting prognosis, utilizing age, Abbreviated Injury Scale for the head, Glasgow Coma Scale Motor component, Glasgow Coma Scale Verbal component, albumin, and Radscore, attained AUC values of 0.846 and 0.803 in the test and external validation cohorts, respectively. Selected radiomic features indicated that irregularly shaped and highly heterogeneous hematomas increased the likelihood of HPC, while larger weighted axial lengths and lower densities of hematomas were associated with a higher risk of poor prognosis. Predictive models that combine radiomic and clinical features exhibit robust performance in forecasting HPC and the risk of poor prognosis in CC patients. Radiomic features complement clinical features in predicting HPC, although their ability to enhance the predictive accuracy of the clinical model for adverse prognosis is limited.

4.
Brain Res Bull ; 207: 110878, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218407

RESUMO

Cerebrovascular dysfunction resulting from traumatic brain injury (TBI) significantly contributes to poor patient outcomes. Recent studies revealed the involvement of iron metabolism in neuronal survival, yet its effect on vasculature remains unclear. This study aims to explore the impact of endothelial ferroptosis on cerebrovascular function in TBI. A Controlled Cortical Impact (CCI) model was established in mice, resulting in a significant increase in iron-related proteins such as TfR1, FPN1, and FTH, as well as oxidative stress biomarker 4HNE. This was accompanied by a decline in expression of the ferroptosis inhibitor GPX4. Moreover, Perls' staining and nonhemin iron content assay showed iron overload in brain microvascular endothelial cells (BMECs) and the ipsilateral cortex. Immunofluorescence staining revealed more FTH-positive cerebral endothelial cells, consistent with impaired perfusion vessel density and cerebral blood flow. As a specific iron chelator, deferoxamine (DFO) treatment inhibited such ferroptotic proteins expression and the accumulation of lipid-reactive oxygen species following CCI, enhancing glutathione peroxidase (GPx) activity. DFO treatment significantly reduced iron deposition in BMECs and brain tissue, and increased density of the cerebral capillaries as well. Consequently, DFO treatment led to improvements in cerebral blood flow (as measured by laser speckle imaging) and behavioral performance (as measured by the neurological severity scores, rotarod test, and Morris water maze test). Taken together, our results indicated that TBI induces remarkable iron disorder and endothelial ferroptosis, and DFO treatment may help maintain iron homeostasis and protect vascular function. This may provide a novel therapeutic strategy to prevent cerebrovascular dysfunction following TBI.


Assuntos
Lesões Encefálicas Traumáticas , Ferroptose , Humanos , Camundongos , Animais , Desferroxamina/farmacologia , Células Endoteliais/metabolismo , Ferroptose/fisiologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Ferro/metabolismo
6.
Front Med (Lausanne) ; 10: 1253824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076233

RESUMO

Background: Claustrophobia is a psychological disease. It is estimated to occur in 2.1-14.3% of all magnetic resonance imaging (MRI) examinations. Mindfulness decompression is an effective means to treat and reduce fear and anxiety. There is a rare report on the application of mindfulness-based stress reduction therapy in the magnetic resonance examinations of patients with claustrophobia to date. Purpose: The purpose of this study is to explore the intervention effect of mindfulness respiratory decompression therapy on the MRI inspection of patients with claustrophobia. Methods: A total of 86 patients with claustrophobia requiring MRI in our hospital from January 2018 to December 2020 were divided into two groups. The control group was given routine psychological nursing, and the observation group was given a mindfulness breathing technique on the basis of the control group. Before and after the intervention, we compared the intervention effect, satisfaction with nurses' psychological intervention technique, severe autonomic nervous symptoms during the examination, self-rating anxiety scale (SAS) scores, and profile of mood states revised (POMS-R) scores. Results: The total effective rate of intervention in the observation group was 90.90%, which was significantly higher (χ2 = 6.857, p = 0.00004) than that in the control group (26.19%). Severe autonomic nervous symptoms in the observation group were significantly lower than those in the control group (p < 0.05). After the intervention, SAS scores and POMS-R scores in the observation group decreased with statistical significance (p < 0.05). Conclusion: Mindfulness respiratory decompression therapy can effectively help claustrophobic patients complete an MRI examination, which may be worthy of wide promotion and application in the clinic.

7.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(7): 697-704, 2023 Jul 15.
Artigo em Chinês | MEDLINE | ID: mdl-37529951

RESUMO

OBJECTIVES: To investigate the risk factors for neonatal asphyxia in Hubei Enshi Tujia and Miao Autonomous Prefecture and establish a nomogram model for predicting the risk of neonatal asphyxia. METHODS: A retrospective study was conducted with 613 cases of neonatal asphyxia treated in 20 cooperative hospitals in Enshi Tujia and Miao Autonomous Prefecture from January to December 2019 as the asphyxia group, and 988 randomly selected non-asphyxia neonates born and admitted to the neonatology department of these hospitals during the same period as the control group. Univariate and multivariate analyses were used to identify risk factors for neonatal asphyxia. R software (4.2.2) was used to establish a nomogram model. Receiver operator characteristic curve, calibration curve, and decision curve analysis were used to assess the discrimination, calibration, and clinical usefulness of the model for predicting the risk of neonatal asphyxia, respectively. RESULTS: Multivariate logistic regression analysis showed that minority (Tujia), male sex, premature birth, congenital malformations, abnormal fetal position, intrauterine distress, maternal occupation as a farmer, education level below high school, fewer than 9 prenatal check-ups, threatened abortion, abnormal umbilical cord, abnormal amniotic fluid, placenta previa, abruptio placentae, emergency caesarean section, and assisted delivery were independent risk factors for neonatal asphyxia (P<0.05). The area under the curve of the model for predicting the risk of neonatal asphyxia based on these risk factors was 0.748 (95%CI: 0.723-0.772). The calibration curve indicated high accuracy of the model for predicting the risk of neonatal asphyxia. The decision curve analysis showed that the model could provide a higher net benefit for neonates at risk of asphyxia. CONCLUSIONS: The risk factors for neonatal asphyxia in Hubei Enshi Tujia and Miao Autonomous Prefecture are multifactorial, and the nomogram model based on these factors has good value in predicting the risk of neonatal asphyxia, which can help clinicians identify neonates at high risk of asphyxia early, and reduce the incidence of neonatal asphyxia.


Assuntos
Asfixia Neonatal , Nomogramas , Recém-Nascido , Humanos , Masculino , Gravidez , Feminino , Estudos Retrospectivos , Cesárea , Fatores de Risco , Asfixia Neonatal/epidemiologia , Asfixia Neonatal/etiologia
8.
Dalton Trans ; 52(23): 7957-7965, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37222142

RESUMO

To overcome the disadvantage of simple bimetallic nanocluster solutions being difficult to store and utilize, we prepared and obtained a novel gold and copper bimetallic nanocluster-doped chitosan fluorescent composite film. In this study, gold and copper bimetallic nanoclusters emitting strong red fluorescence were first synthesized by a chemical reduction method. Subsequently, a novel gold and copper bimetallic nanocluster-doped chitosan fluorescent composite film was successfully prepared by a solution casting method. After 60 minutes of UV light irradiation or 30 days at room temperature, the relative fluorescence intensity values of the composite film decreased by 0.9% and 1.2%, respectively. This indicates that its optical properties are stable and that it can be stored for a long time. The composite film has strong and bright red fluorescence and can be used as a fluorescent probe to achieve real-time detection of Cr(VI). It also has a low detection limit for Cr(VI) (0.26 ppb), so it can be applied to the detection of Cr(VI) in actual water samples and get satisfactory detection results. Due to its portability, high selectivity, and high sensitivity, it can also be extended to chemical and food detection.

9.
Am J Transl Res ; 15(2): 834-846, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36915770

RESUMO

OBJECTIVE: To perform Genome-wide analysis of Gypenoside XLIX (Gyp-XLIX) in the treatment of fatty liver cells. METHODS: The gene profiles of 3 normal liver cells, 3 fatty liver cells, and 3 fatty liver cells treated with Gyp-XLIX were detected by high-throughput sequencing to identify the differentially expressed genes (DEGs) in fatty liver treated by Gyp-XLIX. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used to explore the biological functions of DEGs. By constructing lncRNA-mRNA co-expression network of DEGs, network node genes were mined. Possible target genes of differentially expressed lncRNA were predicted by cis regulation. RESULTS: 782 DEGs were screened out; that is, 172 genes were highly expressed in fatty liver cells, and the expression decreased to the level of normal liver cells after Gyp-XLIX treatment; 610 genes were under expressed in fatty liver cells, and the expression increased to the level of normal liver cells after Gyp-XLIX treatment. Functional analysis of KEGG and GO showed that DEGs process DNA-binding transcription factor activity and ion transmembrane transporter activity in the plasma membrane region. This mediates glycerophospholipid metabolism, bile secretion, fatty acid degradation and other signaling pathways. lncRNA analysis showed that the expression of 16 lncRNAs was low in fatty liver cells, and the expression was increased to the level of normal liver cells after Gyp-XLIX treatment. Target gene prediction showed that 16 differentially expressed lncRNAs had cis potential to regulate target genes, among which lncRNA RPARP-AS1 had a high degree of relationship with other genes. lncRNA-mRNA co-expression network results showed that lncRNA RPARP-AS1 may acted on NFKB2. CONCLUSION: LncRNA was differentially expressed in fatty liver cells and Gyp-XLIX treated fatty liver cells, and lncRNA RPARP-AS1 may be a regulatory gene in Gyp-XLIX treated fatty liver.

10.
J Clin Pathol ; 76(11): 784-789, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36008105

RESUMO

AIMS: Reactivation of embryonic ζ-globin is a promising strategy for genetic treatment of α-thalassaemia. However, quantification of ζ-globin as a quantitative trait in α-thalassaemia carriers and patients remains incompletely understood. In this study, we aimed to set up a reliable approach for the quantification of ζ-globin in α-thalassaemia carriers, followed by a population study to investigate its expression patterns. METHODS: ζ-globin was purified as monomers from cord blood haemolysate of a Hb Bart's fetus, followed by absolute protein quantification, which was then tested by in-house ELISA system and introduced as protein standard. It was then used for large-scale quantification in peripheral blood samples from 6179 individuals. Finally, liquid chromatography-tandem mass spectrometry (LC-MS/MS) introduced as an independent validating approach by measuring ζ-globin expression in a second cohort of 141-SEA/αα carriers. RESULTS: The ELISA system was proved sensitive in distinguishing individuals with varied extent of ζ-globin. Large scale quantitative study of this --SEA/αα carrier cohort indicated the high diversity of ζ-globin expression ranging from 0.00155 g/L to 1.48778 g/L. Significant positive correlation between ELISA and LC-MS/MS (R=0.400, p<0.001) was observed and it is more sensitive in distinguishing the samples with extreme expression of ζ-globin (R=0.650, p<0.001). CONCLUSION: Our study has reported reliable approaches for the quantification of ζ-globin and presented the expression patterns of ζ-globin among the --SEA/αα carrier population, which might lay a foundation on subsequent genotype-phenotype studies on mechanisms of delayed haemoglobin switch in α-thalassaemia.


Assuntos
Talassemia alfa , Globinas zeta , Humanos , Talassemia alfa/diagnóstico , Talassemia alfa/etnologia , Talassemia alfa/genética , Talassemia alfa/terapia , Cromatografia Líquida , População do Sudeste Asiático/genética , Espectrometria de Massas em Tandem , Globinas zeta/análise , Globinas zeta/uso terapêutico
11.
Cells ; 11(19)2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-36230939

RESUMO

White matter damage (WMD), one of the research hotspots of subarachnoid hemorrhage (SAH), mainly manifests itself as myelin injury and oligodendrocyte differentiation disorder after SAH, although the specific mechanism remains unclear. Dexamethasone-induced Ras-related protein 1(Dexras1) has been reported to be involved in nervous system damage in autoimmune encephalitis and multiple sclerosis. However, whether Dexras1 participates in dysdifferentiation of oligodendrocytes and myelin injury after SAH has yet to be examined, which is the reason for creating the research content of this article. Here, intracerebroventricular lentiviral administration was used to modulate Dexras1 levels in order to determine its functional influence on neurological injury after SAH. Immunofluorescence, transmission electron microscopy, and Western blotting methods, were used to investigate the effects of Dexras1 on demyelination, glial cell activation, and differentiation of oligodendrocyte progenitor cells (OPCs) after SAH. Primary rat brain neurons were treated with oxyhemoglobin to verify the association between Dexras1 and cAMP-CREB. The results showed that Dexras1 levels were significantly increased upon in vivo SAH model, accompanied by OPC differentiation disturbances and myelin injury. Dexras1 overexpression significantly worsened OPC dysdifferentiation and myelin injury after SAH. In contrast, Dexras1 knockdown ameliorated myelin injury, OPC dysdifferentiation, and glial cell activation. Further research of the underlying mechanism discovered that the cAMP-CREB pathway was inhibited after Dexras1 overexpression in the in vitro model of SAH. This study is the first to confirm that Dexras1 induced oligodendrocyte dysdifferentiation and myelin injury after SAH by inhibiting the cAMP-CREB pathway. This present research may reveal novel therapeutic targets for the amelioration of brain injury and neurological dysfunction after SAH.


Assuntos
Bainha de Mielina , Hemorragia Subaracnóidea , Proteínas ras/metabolismo , Animais , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dexametasona , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Oxiemoglobinas/metabolismo , Oxiemoglobinas/uso terapêutico , Ratos , Hemorragia Subaracnóidea/metabolismo
13.
Front Surg ; 9: 886237, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35747431

RESUMO

Objective: A nomogram was developed in this work to predict the probability of delayed cerebral infarction (DCI) after ruptured intracranial aneurysms (RIA) clipping. Methods: Clinical data of patients with intracranial aneurysm were obtained from the neurosurgery department of the First Affiliated Hospital of Chongqing Medical University from January 2016 to December 2020. A total of 419 patients receiving surgery of ruptured intracranial aneurysm clipping were included and a total of 37 patients with DCI were set as the observation group. The control group consisted of 382 patients without DCI. Risk factors of DCI were screened by univariate and multivariate logistic regression analysis and included in the nomogram. Results: Univariate analysis showed that female (P = 0.009), small aneurysm (P = 0.031), intraoperative aneurysm rupture (P = 0.007) and cerebral vasospasm (P < 0.001) were risk factors for postoperative DCI while smoking history (P = 0.044) were protective factors for postoperative DCI. Multivariate Logistic regression analysis showed that small aneurysm (P = 0.002, OR = 3.332, 95%-7.104), intraoperative aneurysm rupture (P = 0.004, OR = 0.122, 95%-CI, 0.029-0.504)and cerebral vasospasm (P < 0.001, OR = 0.153, 95%-CI, 0.070-0.333) were independent risk factors of postoperative DCI. The calibration curve of the probability of occurrence showed that the nomogram was in good correspondence with the observed results with a C-index of 0.766 (95% CI, 0.684-0.848). Meanwhile, the Decision curve analysis (DCA) showed that the established predictive model had a good clinical net benefit. Conclusion: The well-established nomogram is expected to be an effective tool to predict the occurrence of DCI after intracranial ruptured aneurysm and can be used to assist clinicians to develop more effective treatment strategies and improve the prognosis of patients.

14.
Ecotoxicol Environ Saf ; 239: 113672, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35617906

RESUMO

Fluoride has received much attention for its predominant bone toxicity in the human body. However, the toxic mechanism of bone injury caused by fluoride exposure remains largely unclear. Bone marrow mesenchymal stem cells (BMSCs) are widely used as model cells for evaluating bone toxicity after environmental toxicant exposure. In this study, BMSCs were exposed to fluoride at 1, 2, and 4 mM for 24 h, and fluoride significantly inhibited cell viability at 2 and 4 mM. A multiomics analysis combining transcriptomics with metabolomics was employed to detect alterations in genes and metabolites in BMSCs treated with 2 mM fluoride. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of transcriptomics profiles identified "lysosomes" as the top enriched pathway, which was severely damaged by fluoride exposure. Lysosomal damage was indicated by decreases in the expression of lysosomal associated membrane protein 2 (LAMP 2) and cathepsin B (CTSB) as well as an increase in pH. Upregulation of the lysosome-related genes Atp6v0b and Gla was observed, which may be attributed to a compensatory lysosomal biogenesis transcriptional response. Interestingly, inhibition of glutathione metabolism was observed in fluoride-treated BMSCs at the metabolomic level. Moreover, an integrative analysis between altered genes, metabolites and lysosome signaling pathways was conducted. Palmitic acid, prostaglandin C2, and prostaglandin B2 metabolites were positively associated with Atp6v0b, a lysosome-related gene. Overall, our results provide novel insights into the mechanism responsible for fluoride-induced bone toxicity.


Assuntos
Células-Tronco Mesenquimais , Transcriptoma , Fluoretos/metabolismo , Fluoretos/toxicidade , Humanos , Lisossomos , Células-Tronco Mesenquimais/metabolismo , Metabolômica
15.
Signal Transduct Target Ther ; 7(1): 130, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35462576

RESUMO

Oral squamous cell carcinoma (OSCC) is the most common type of oral malignancy, and metastasis accounts for the poor prognosis of OSCC. Autophagy is considered to facilitate OSCC development by mitigating various cellular stresses; nevertheless, the mechanisms of autophagy in OSCC cell proliferation and metastasis remain unknown. In our study, high-sensitivity label-free quantitative proteomics analysis revealed nuclear protein 1 (NUPR1) as the most significantly upregulated protein in formalin-fixed paraffin-embedded tumour samples derived from OSCC patients with or without lymphatic metastasis. Moreover, NUPR1 is aberrantly expressed in the OSCC tissues and predicts low overall survival rates for OSCC patients. Notably, based on tandem mass tag-based quantitative proteomic analysis between stable NUPR1 knockdown OSCC cells and scrambled control OSCC cells, we confirmed that NUPR1 maintained autophagic flux and lysosomal functions by directly increasing transcription factor E3 (TFE3) activity, which promoted OSCC cell proliferation and metastasis in vitro and in vivo. Collectively, our data revealed that the NUPR1-TFE3 axis is a critical regulator of the autophagic machinery in OSCC progression, and this study may provide a potential therapeutic target for the treatment of OSCC.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Neoplasias de Cabeça e Pescoço , Proteínas de Neoplasias , Carcinoma de Células Escamosas de Cabeça e Pescoço , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proliferação de Células/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Proteínas de Neoplasias/genética , Proteínas Nucleares , Proteômica , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
16.
Neurochem Res ; 47(3): 692-700, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34743269

RESUMO

Ferroptosis is a novel form of regulated cell death involved in the pathophysiological process of experimental subarachnoid hemorrhage (SAH), but how neuronal ferroptosis occurs remains unknown. In this study, we report that SAH-induced ferroptosis is macroautophagy/autophagy dependent because the inhibition of autophagy by knocking out autophagy-related gene 5 (ATG5) apparently mitigated SAH-induced ferroptosis. We created an experimental SAH model in Sprague-Dawley rats to determine the possible mechanism. We found that SAH can trigger neuronal ferroptosis, as evidenced by the disruption of iron homeostasis, elevation of intracellular lipid peroxidation (LPO) and decreased expression of ferroptosis-protective proteins. Then, we inhibited autophagy by ATG5 gene knockout, showing that autophagy inhibition can reduce the intracellular iron level and LPO, improve the expression of ferroptosis-protective proteins, and subsequently alleviate SAH-induced cell death. Additionally, autophagy inhibition also attenuated SAH prognostic indicators, such as brain edema, blood-brain barrier permeability, and neurological deficits. These findings not only present an opinion that SAH triggers neuronal ferroptosis via activation of ferritinophagy but also indicate that regulating ferritinophagy and maintaining iron homeostasis could provide clues for the prevention of early brain injury.


Assuntos
Lesões Encefálicas , Ferroptose , Hemorragia Subaracnóidea , Animais , Autofagia , Lesões Encefálicas/metabolismo , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/metabolismo
17.
Ecotoxicol Environ Saf ; 229: 113085, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34920184

RESUMO

Cadmium (Cd) is a toxic heavy metal that can facilitate the development and progression of breast cancer (BC). Emerging evidence has indicated that the progression of Cd-exposed BC is related to the dysregulation of microRNAs (miRNAs). The purpose of our study was to investigate the expression pattern and underlying mechanisms of miR-374c-5p in Cd-mediated BC progression. In this study, T-47D cells and MCF-7 cells were treated with different concentrations of Cd (0.1, 1 and 10 µM) for 72 h. MiR-374c-5p expression was downregulated, and transfection of miR-374c-5p mimics significantly decreased BC cell proliferation, migration and invasion induced by 10 µM Cd. Importantly, we used the Cytoscape software plugin cytoHubba to analyse the intersected genes between our RNA-Seq results and the mirDIP database, and six hub genes (CNR1, CXCR4, GRM3, RTN1, SLC1A6 and ZEB1) were identified as potential direct targets of miR-374c-5p in our model; however, luciferase reporter assays indicated that miR-374c-5p only repressed GRM3 by directly binding to its 3'-untranslated region (UTR). Of note, we verified that suppression of N6-methyladenosine (m6A) modification led to miR-374c-5p downregulation by decreasing its RNA transcript stability. Together, these findings demonstrated that m6A modification of pri-miRNA-374c blocks miRNA-374c-5p maturation and then activates GRM3 expression, which drives BC cell metastasis after Cd exposure.


Assuntos
Neoplasias da Mama , MicroRNAs , Adenosina/análogos & derivados , Neoplasias da Mama/genética , Cádmio/toxicidade , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética
18.
Toxicol Res (Camb) ; 10(5): 1052-1063, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34733490

RESUMO

Cancer is one of the leading causes of death in the world. It is very important to find drugs with high efficiency, low toxicity, and low side effects for the treatment of cancer. Flavonoids and their derivatives with broad biological functions have been recognized as anti-tumor chemicals. 8-Formylophiopogonanone B (8-FOB), a naturally existed homoisoflavonoids with rarely known biological functions, needs pharmacological evaluation. In order to explore the possible anti-tumor action of 8-FOB, we used six types of tumor cells to evaluate in vitro effects of this agent on cell viability and tested the effects on clone formation ability, scratching wound-healing, and apoptosis. In an attempt to elucidate the mechanism of pharmacological action, we examined 8-FOB-induced intracellular oxidative stress and -disrupted mitochondrial function. Results suggested that 8-FOB could suppress tumor cell viability, inhibit cell migration and invasion, induce apoptosis, and elicit intracellular ROS production. Among these six types of tumor cells, the nasopharyngeal carcinoma CNE-1 cells were the most sensitive cancer cells to 8-FOB treatment. Intracellular ROS production played a pivotal role in the anti-tumor action of 8-FOB. Our present study is the first to document that 8-FOB has anti-tumor activity in vitro and increases intracellular ROS production, which might be responsible for its anti-tumor action. The anti-tumor pharmacological effect of 8-FOB is worthy of further investigation.

19.
Ecotoxicol Environ Saf ; 224: 112626, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34411822

RESUMO

Cadmium (Cd) is a carcinogen that stimulates breast cancer (BC) progression. Rapamycin is a macrolide antibiotic produced by Streptomyces hygroscopicus that possesses a wide array of pharmacological activities, including anti-BC activity. However, the effects of rapamycin on Cd-increased BC progression and the underlying mechanism have not been fully elucidated. Here, we hypothesize that rapamycin antagonizes Cd-induced BC cell proliferation and metastasis by directly modulating ACSS2. In this study, we found that rapamycin efficiently inhibited Cd-induced proliferation, invasion and migration in MCF-7 and T47-D cells. Moreover, a surface plasmon resonance (SPR) assay confirmed that rapamycin directly binds to the ACSS2 protein with a calculated equilibrium dissociation constant (KD) of 18.3 µM. Molecular docking showed that there are three binding sites in the ACSS2 protein and that rapamycin binds at the coenzyme A (COA) binding site with a docking score of - 12.26 and a binding free energy of - 26.34 kcal/mol. More importantly, rapamycin suppresses Cd-induced BC progression by activating ACSS2. After cells were cotreated with an ACSS2 inhibitor, the effects of rapamycin were abolished. In conclusion, our findings suggest that rapamycin suppresses Cd-augmented BC progression by upregulating ACSS2, and ACSS2 may serve as a direct target of rapamycin for inhibiting xenobiotic (e.g., Cd)-mediated BC progression.

20.
Ecotoxicol Environ Saf ; 223: 112562, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34332248

RESUMO

Seafood consumption provides essential elements to humans while also posing risks to human health. A total of 2610 individuals of five edible marine bivalve species (Ruditapes philippinarum, Paphia undulata, Meretrix meretrix, Sinonovacula constricta and Meretrix lyrata) were randomly sampled from six farmer markets in three cities (Beihai, Qinzhou and Fangchenggang) in the southernmost coastal region of China. The concentrations of heavy metals (Cu, Pb, Zn, Cd, Cr, Hg and As) were determined by inductively coupled plasma mass spectrometry (ICP-MS). The estimated daily intake (EDI), target hazard quotient (THQ), total hazard index (HI), and target cancer risk (TR) were calculated to evaluate potential human health risks from bivalve consumption. The mean concentrations of metals in the tissues of bivalves descended in the order Zn > Cu > As > Cd > Cr >Pb > Hg in descending order, and the concentrations varied substantially among the five bivalves. Heavy metal concentrations in edible tissues of most bivalve samples were below the safety limits set by national and international regulations, and there were significant correlations between certain metal concentrations. The EDI values for each metal in each bivalve were significantly lower than the corresponding PTDI (provisional tolerable daily intake) values. Health risk assessment showed that although there is no noncarcinogenic health risk for local residents exposed to individual or combined metals from these bivalves, there is a carcinogenic risk from Cd and Cr exposure. Thus, in the long term, monitoring and controlling bivalve consumption will be important. Although current accumulation levels of bivalves are safe, continued and excessive lifetime consumption over 70 years may pose a target cancer risk.


Assuntos
Bivalves , Metais Pesados , Animais , China , Cidades , Monitoramento Ambiental , Contaminação de Alimentos/análise , Humanos , Metais Pesados/análise , Metais Pesados/toxicidade , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA