Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Fungi (Basel) ; 9(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37998888

RESUMO

Peroxisomes are single-membrane-bound organelles that play critical roles in eukaryotic cellular functions. Peroxisome quantity is a key factor influencing the homeostasis and pathogenic processes of pathogenic fungi. The aim of the present study was to investigate the underlying mechanisms of the reduction in number of peroxisomes in Fusarium graminearum consequent to FgPex4 and FgPex22-like deletion. The number of peroxisomes decreased by 40.55% and 39.70% when FgPex4 and FgPex22-like, respectively, were absent. Peroxisome biogenesis-related proteins, as well as inheritance- and division-related dynamin-like proteins were reduced at the transcriptional level in the mutant strains. In addition, the degree of pexophagy was intensified and the accumulation of ubiquitinated FgPex5 was also increased in F. graminearum when FgPex4 or FgPex22-like was absent. The findings suggest that FgPex4 and FgPex22-like influence the number of peroxisomes by influencing peroxisome biogenesis and pexophagy.

2.
Environ Microbiol ; 24(12): 6290-6306, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36335568

RESUMO

Vesicular trafficking is a conserved material transport process in eukaryotic cells. The GGA family proteins are clathrin adaptors that are involved in eukaryotic vesicle transport, but their functions in phytopathogenic filamentous fungi remain unexplored. Here, we examined the only GGA family protein in Fusarium graminearum, FgGga1, which localizes to both the late Golgi and endosomes. In the absence of FgGga1, the fungal mutant exhibited defects in vegetative growth, DON biosynthesis, ascospore discharge and virulence. Fluorescence microscopy analysis revealed that FgGga1 is associated with trans-Golgi network (TGN)-to-plasma membrane, endosome-to-TGN and endosome-to-vacuole transport. Mutational analysis on the five domains of FgGga1 showed that the VHS domain was required for endosome-to-TGN transport while the GAT167-248 and the hinge domains were required for both endosome-to-TGN and endosome-to-vacuole transport. Importantly, the deletion of the FgGga1 domains that are required in vesicular trafficking also inhibited vegetative growth and virulence of F. graminearum. In addition, FgGga1 interacted with the ascospore discharge regulator Ca2+ ATPase FgNeo1, whose transport to the vacuole is dependent on FgGga1-mediated endosome-to-vacuole transport. Our results suggest that FgGga1 is required for fungal development and virulence via FgGga1-mediated vesicular trafficking, and FgGga1-mediated endosome-to-vacuole transport facilitates ascospore discharge in F. graminearum.


Assuntos
Fusarium , Virulência/genética , Fusarium/metabolismo , Rede trans-Golgi/metabolismo , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Transporte Proteico , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
3.
J Fungi (Basel) ; 8(10)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36294655

RESUMO

Fusarium head blight (FHB) caused by Fusarium graminearum is a significant disease among cereal crops. In F. graminearum, biosynthesis of leucine, which is a branched chain amino acid, is achieved by converting α-isopropylmalate to ß-isopropylmalate catalyzed by isopropylmalate isomerase encoded by LEU1. Considering the potential for targeting this pathway by fungicides, we characterized the gene FgLEU1 (FGSG-09589) in the Fusarium graminearum genome using bioinformatics methods. For functional characterization, we constructed a deletion mutant of FgLEU1 (ΔLEU1) through homologous recombination. Compared with the wild-type strain PH-1, ΔLEU1 showed slower colony growth and fewer aerial mycelia. Leucine addition was needed to ensure proper mutant growth. Further, ΔLEU1 showed decreased conidial production and germination rates, and could not produce ascospores. Moreover, ΔLEU1 showed complete loss of pathogenicity and reduced ability to produce deoxynivalenol (DON) and aurofusarin. Upstream and downstream genes of FgLEU1 were significantly upregulated in ΔLEU1. Contrary to previous reports, the deletion mutant was more resistant to osmotic stress and cell wall-damaging agents than the wild-type. Taken together, FgLEU1 plays a crucial role in leucine synthesis, aerial mycelial growth, sexual and asexual reproduction, pathogenicity, virulence, and pigmentation in Fusarium graminearum, indicating its potential as a target for novel antifungal agents.

4.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36293041

RESUMO

Fusarium crown rot (FCR) of wheat, an important soil-borne disease, presents a worsening trend year by year, posing a significant threat to wheat production. Fusarium pseudograminearum cv. b was reported to be the dominant pathogen of FCR in China. Peroxisomes are single-membrane organelles in eukaryotes that are involved in many important biochemical metabolic processes, including fatty acid ß-oxidation. PEX11 is important proteins in peroxisome proliferation, while less is known in the fungus F. pseudograminearum. The functions of FpPEX11a, FpPEX11b, and FpPEX11c in F. pseudograminearum were studied using reverse genetics, and the results showed that FpPEX11a and FpPEX11b are involved in the regulation of vegetative growth and asexual reproduction. After deleting FpPEX11a and FpPEX11b, cell wall integrity was impaired, cellular metabolism processes including active oxygen metabolism and fatty acid ß-oxidation were significantly blocked, and the production ability of deoxynivalenol (DON) decreased. In addition, the deletion of genes of FpPEX11a and FpPEX11b revealed a strongly decreased expression level of peroxisome-proliferation-associated genes and DON-synthesis-related genes. However, deletion of FpPEX11c did not significantly affect these metabolic processes. Deletion of the three protein-coding genes resulted in reduced pathogenicity of F. pseudograminearum. In summary, FpPEX11a and FpPEX11b play crucial roles in the growth and development, asexual reproduction, pathogenicity, active oxygen accumulation, and fatty acid utilization in F. pseudograminearum.


Assuntos
Fusarium , Proliferadores de Peroxissomos , Virulência/genética , Doenças das Plantas/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Solo , Ácidos Graxos/metabolismo
5.
J Fungi (Basel) ; 8(9)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36135661

RESUMO

Mitochondrial porin, the voltage-dependent anion-selective channel (VDAC), is the most abundant protein in the outer membrane, and is critical for the exchange of metabolites and phospholipids in yeast and mammals. However, the functions of porin in phytopathogenic fungi are not known. In this study, we characterized a yeast porin orthologue, Fgporin, in Fusarium graminearum. The deletion of Fgporin resulted in defects in hyphal growth, conidiation, and perithecia development. The Fgporin deletion mutant showed reduced virulence, deoxynivalenol production, and lipid droplet accumulation. In addition, the Fgporin deletion mutant exhibited morphological changes and the dysfunction of mitochondria, and also displayed impaired autophagy in the non-nitrogen medium compared to the wild type. Yeast two-hybrid and bimolecular fluorescence complementation assays indicated that Fgporin interacted with FgUps1/2, but not with FgMdm35. Taken together, these results suggest that Fgporin is involved in hyphal growth, asexual and sexual reproduction, virulence, and autophagy in F. graminearum.

6.
Life (Basel) ; 12(6)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35743830

RESUMO

Fusarium graminearum is a plant filamentous pathogenic fungi and the predominant causal agent of Fusarium head blight (FHB) in cereals worldwide. The regulators of the secretory pathway contribute significantly to fungal mycotoxin synthesis, development, and virulence. However, their roles in these processes in F. graminearum remain poorly understood. Here, we identified and functionally characterized the endoplasmic reticulum (ER) cargo receptor FgErv14 in F. graminearum. Firstly, it was observed that FgErv14 is mainly localized in the ER. Then, we constructed the FgErv14 deletion mutant (ΔFgerv14) and found that the absence of the FgErv14 caused a serious reduction in vegetative growth, significant defects in asexual and sexual reproduction, and severely impaired virulence. Furthermore, we found that the ΔFgerv14 mutant exhibited a reduced expression of TRI genes and defective toxisome generation, both of which are critical for deoxynivalenol (DON) biosynthesis. Importantly, we found the green fluorescent protein (GFP)-tagged FgRud3 was dispersed in the cytoplasm, whereas GFP-FgSnc1-PEM was partially trapped in the late Golgi in ΔFgerv14 mutant. These results demonstrate that FgErv14 mediates anterograde ER-to-Golgi transport as well as late secretory Golgi-to-Plasma membrane transport and is necessary for DON biosynthesis, asexual and sexual reproduction, vegetative growth, and pathogenicity in F. graminearum.

7.
Front Microbiol ; 12: 756292, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956121

RESUMO

Peroxisomes are essential organelles that play important roles in a variety of biological processes in eukaryotic cells. To understand the synthesis of peroxisomes comprehensively, we identified the gene FgPEX22-like, encoding FgPEX22-like, a peroxin, in Fusarium graminearum. Our results showed that although FgPEX22-like was notably different from other peroxins (PEX) in Saccharomyces cerevisiae, it contained a predicted PEX4-binding site and interacted with FgPEX4 as a rivet protein of FgPEX4. To functionally characterize the roles of FgPEX22-like in F. graminearum, we performed homologous recombination to construct a deletion mutant (ΔPEX22-like). Analysis of the mutant showed that FgPEX22-like was essential for sexual and asexual reproduction, fatty acid utilization, pathogenicity, and production of the mycotoxin deoxynivalenol. Deletion of FgPEX22-like also led to increased production of lipid droplets and decreased elimination of reactive oxygen species. In addition, FgPEX22-like was required for the biogenesis of Woronin bodies. Taken together, our data demonstrate that FgPEX22-like is a peroxin in F. graminearum that interacts with PEX4 by anchoring PEX4 at the peroxisomal membrane and contributes to the peroxisome function in F. graminearum.

8.
Plant J ; 108(2): 330-346, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34273211

RESUMO

Plant aquaporins are a recently noted biological resource with a great potential to improve crop growth and defense traits. Here, we report the functional modulation of the rice (Oryza sativa) aquaporin OsPIP1;3 to enhance rice photosynthesis and grain production and to control bacterial blight and leaf streak, the most devastating worldwide bacterial diseases in the crop. We characterize OsPIP1;3 as a physiologically relevant CO2 -transporting facilitator, which supports 30% of rice photosynthesis on average. This role is nullified by interaction of OsPIP1;3 with the bacterial protein Hpa1, an essential component of the Type III translocon that supports translocation of the bacterial Type III effectors PthXo1 and TALi into rice cells to induce leaf blight and streak, respectively. Hpa1 binding shifts OsPIP1;3 from CO2 transport to effector translocation, aggravates bacterial virulence, and blocks rice photosynthesis. On the contrary, the external application of isolated Hpa1 to rice plants effectively prevents OsPIP1;3 from interaction with Hpa1 secreted by the bacteria that are infecting the plants. Blockage of the OsPIP1;3-Hpa1 interaction reverts OsPIP1;3 from effector translocation to CO2 transport, abrogates bacterial virulence, and meanwhile induces defense responses in rice. These beneficial effects can combine to enhance photosynthesis by 29-30%, reduce bacterial disease by 58-75%, and increase grain yield by 11-34% in different rice varieties investigated in small-scale field trials conducted during the past years. Our results suggest that crop productivity and immunity can be coordinated by modulating the physiological and pathological functions of a single aquaporin to break the growth-defense tradeoff barrier.


Assuntos
Oryza/fisiologia , Fotossíntese/fisiologia , Proteínas de Plantas/metabolismo , Xanthomonas/patogenicidade , Proteínas de Bactérias/metabolismo , Transporte Biológico , Dióxido de Carbono/metabolismo , China , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/fisiologia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/crescimento & desenvolvimento , Virulência , Xanthomonas/metabolismo
9.
Appl Environ Microbiol ; 87(6)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33452023

RESUMO

Golgins are coiled-coil proteins that play prominent roles in maintaining the structure and function of the Golgi complex. However, the role of golgin proteins in phytopathogenic fungi remains poorly understood. In this study, we functionally characterized the Fusarium graminearum golgin protein RUD3, a homolog of ScRUD3/GMAP-210 in Saccharomyces cerevisiae and mammalian cells. Cellular localization observation revealed that RUD3 is located in the cis-Golgi. Deletion of RUD3 caused defects in vegetative growth, ascospore discharge, deoxynivalenol (DON) production, and virulence. Moreover, the Δrud3 mutant showed reduced expression of tri genes and impairment of the formation of toxisomes, both of which play essential roles in DON biosynthesis. We further used green fluorescent protein (GFP)-tagged SNARE protein SEC22 (SEC22-GFP) as a tool to study the transport between the endoplasmic reticulum (ER) and Golgi and observed that SEC22-GFP was retained in the cis-Golgi in the Δrud3 mutant. RUD3 contains the coiled coil (CC), GRAB-associated 2 (GA2), GRIP-related Arf binding (GRAB), and GRAB-associated 1 (GA1) domains, which except for GA1, are indispensable for normal localization and function of RUD3, whereas only CC is essential for normal RUD3-RUD3 interaction. Together, these results demonstrate how the golgin protein RUD3 mediates retrograde trafficking in the ER-to-Golgi pathway and is necessary for growth, ascospore discharge, DON biosynthesis, and pathogenicity in F. graminearumIMPORTANCEFusarium head blight (FHB) caused by the fungal pathogen Fusarium graminearum is an economically important disease of wheat and other small grain cereal crops worldwide, and limited effective control strategies are available. A better understanding of the regulation mechanisms of F. graminearum development, deoxynivalenol (DON) biosynthesis, and pathogenicity is therefore important for the development of effective control management of this disease. Golgins are attached via their extreme carboxy terminus to the Golgi membrane and are involved in vesicle trafficking and organelle maintenance in eukaryotic cells. In this study, we systematically characterized a highly conserved Golgin protein, RUD3, and found that it is required for vegetative growth, ascospore discharge, DON production, and pathogenicity in F. graminearum Our findings provide a comprehensive characterization of the golgin family protein RUD3 in plant-pathogenic fungus, which could help to identify a new potential target for effective control of this devastating disease.


Assuntos
Proteínas Fúngicas/fisiologia , Fusarium , Proteínas da Matriz do Complexo de Golgi/fisiologia , Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/crescimento & desenvolvimento , Fusarium/patogenicidade , Fusarium/fisiologia , Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi/genética , Filogenia , Doenças das Plantas/microbiologia , Reprodução Assexuada , Esporos Fúngicos , Tricotecenos/metabolismo , Triticum/microbiologia , Virulência
10.
Plant Dis ; 105(5): 1555-1557, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33258431

RESUMO

Botryosphaeria dothidea is a latent and important fungal pathogen on a wide range of woody plants. Fruit ring rot caused by B. dothidea is a major disease in China on apple. This study establishes a high-quality, nearly complete, and well-annotated genome sequence of B. dothidea strain sdau11-99. The findings of this research provide a reference genome resource for further research on the apple fruit ring rot pathogen on apple and other hosts.


Assuntos
Ascomicetos , Malus , Ascomicetos/genética , Frutas , Madeira
11.
Fungal Genet Biol ; 146: 103483, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33176219

RESUMO

Phosphatidylserine decarboxylases (Psds) are enzymes regulating phosphatidylethanolamine biosynthesis in prokaryotes and eukaryotes, and have the central role in lipid metabolism. To date, the functions of Psds in plant pathogenic fungi are not fully understood. In this study, we have characterized two yeast Psd orthologues: FgPsd1 and FgPsd2, in Fusarium graminearum. Our results indicate that FgPsd1 and FgPsd2 are localized in mitochondria and Golgi, respectively. In addition, we have determined that FgPsd1 is a lethal gene and deletion of FgPsd2 resulted in a significant reduction of mycelial growth and conidiation. Futhermore, the FgPsd2 deletion mutant (ΔFgPsd2) is defective in ascospore production and virulence in wheat. Our study has also found that the ΔFgPsd2 mutant is more sensitive to osmotic and oxygen stresses. Moreover, deletion of FgPsd2 reduced the formation of lipid droplets and aggravated autophagy in F. graminearum. In summary, our findings indicate that FgPsd2 is important for mycelial growth, sexual and asexual reproduction, virulence, lipid droplet formation and autophagy in F. graminearum.


Assuntos
Carboxiliases/genética , Fusarium/genética , Triticum/microbiologia , Virulência/genética , Fusarium/crescimento & desenvolvimento , Mitocôndrias/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Esporos Fúngicos/genética , Esporos Fúngicos/patogenicidade
12.
Fungal Biol ; 124(11): 969-980, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33059848

RESUMO

Fusarium graminearum is the main pathogen of Fusarium head blight (FHB) in wheat and related species, which causes serious production decreases and economic losses and produces toxins such as deoxynivalenol (DON), which endangers the health of humans and livestock. Vesicle transport is a basic physiological process required for cell survival in eukaryotes. Many regulators of vesicle transport are reported to be involved in the pathogenicity of fungi. In yeast and mammalian cells, the ADP-ribosylation factor-like small GTPase Arl1 and its orthologs are involved in regulating vesicular trafficking, cytoskeletal reorganization and other significant biological processes. However, the role of Arl1 in F. graminearum is not well understood. In this study, we characterized the Arl1-homologous protein FgArl1 in F. graminearum and showed that FgArl1 is located in the trans-Golgi apparatus. The deletion of FgARL1 resulted in a significant decrease in vegetative growth and pathogenicity. Further analyses of the ΔFgarl1 mutant revealed defects in the production of DON. Taken together, these results indicate that FgArl1 is important in the development and pathogenicity of F. graminearum.


Assuntos
Proteínas Fúngicas , Fusarium , Proteínas Monoméricas de Ligação ao GTP , Tricotecenos , Virulência , Fatores de Ribosilação do ADP/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/enzimologia , Fusarium/crescimento & desenvolvimento , Fusarium/patogenicidade , Humanos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Doenças das Plantas/microbiologia , Tricotecenos/metabolismo , Virulência/genética
13.
Fungal Genet Biol ; 144: 103443, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32800918

RESUMO

Fusarium graminearum is the main pathogenic fungus causing Fusarium head blight (FHB), which is a wheat disease with a worldwide prevalence. In eukaryotes, phosphatidylinositol 4-phosphate (PI4P), which participates in many physiological processes, is located primarily in different organelles, including the trans-Golgi network (TGN), plasma membrane and endosomes. Type II phosphatidylinositol 4-kinases (PI4Ks) are involved in regulating the production of PI4P in yeast, plants and mammalian cells. However, the role of these proteins in phytopathogenic fungi is not well understood. In this study, we characterized the type II PI4K protein FgLsb6 in F. graminearum, a homolog of Lsb6 in Saccharomyces cerevisiae. Unlike Lsb6, FgLsb6 localizes to the vacuoles and endosomes. The ΔFglsb6 mutant displayed defects in vegetative growth, deoxynivalenol (DON) production and pathogenicity. Furthermore, the ΔFglsb6 deletion mutant also exhibited increased resistance to osmotic, oxidative and cell wall stresses. Further analyses of the ΔFglsb6 mutant showed that it was defective in the generation of PI4P on endosomes and endocytosis. Collectively, our data suggest that the decreased vegetative growth and pathogenicity of ΔFglsb6 was due to the conservative roles of FgLsb6 in the generation of PI4P on endosomes and endocytosis.


Assuntos
1-Fosfatidilinositol 4-Quinase/genética , Fusarium/genética , Doenças das Plantas/genética , Virulência/genética , Parede Celular/microbiologia , Fusarium/crescimento & desenvolvimento , Regulação Fúngica da Expressão Gênica/genética , Fosfatidilinositóis/metabolismo , Doenças das Plantas/microbiologia , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Triticum/microbiologia , Vacúolos/genética
14.
Fungal Genet Biol ; 141: 103400, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32387406

RESUMO

Endocytosis plays critical roles in cellular processes, including nutrient uptake and signal transduction. Ede1 is an endocytic scaffolding protein that contributes to endocytic site initiation and maturation in yeast. However, the functions of Ede1 in phytopathogenic fungi are not known. Here, we identified functions of FgEde1 (FGSG_05182) in Fusarium graminearum. Deletion of FgEde1 resulted in defects in hyphal growth, conidiation and ascospore development. The FgEde1 deletion mutant showed reduced deoxynivalenol (DON) production and virulence in wheat. Furthermore, the FgEde1 deletion mutant also exhibited increased resistance to osmotic and oxidative stress as well as cell-wall perturbing agents. Importantly, deletion of FgEde1 increased the severity of autophagy in hyphae. Taken together, these results reveal that FgEde1 is involved in hyphal growth, asexual and sexual reproduction, virulence, stress responses, and autophagy in F. graminearum.


Assuntos
Autofagia/genética , Proteínas Fúngicas/genética , Fusarium/genética , Hifas/genética , Fusarium/patogenicidade , Regulação Fúngica da Expressão Gênica/genética , Hifas/patogenicidade , Esporos Fúngicos/genética , Esporos Fúngicos/patogenicidade , Triticum/microbiologia , Virulência/genética
15.
Appl Environ Microbiol ; 86(11)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32220839

RESUMO

Fusarium graminearum, the main pathogenic fungus causing Fusarium head blight (FHB), produces deoxynivalenol (DON), a key virulence factor, which is synthesized in the endoplasmic reticulum (ER). Sey1/atlastin, a dynamin-like GTPase protein, is known to be required for homotypic fusion of ER membranes, but the functions of this protein are unknown in pathogenic fungi. Here, we characterized Sey1/atlastin homologue FgSey1 in F. graminearum Like Sey1/atlastin, FgSey1 is located in the ER. The FgSEY1 deletion mutant exhibited significantly reduced vegetative growth, asexual development, DON biosynthesis, and virulence. Moreover, the ΔFgsey1 mutant was impaired in the formation of normal lipid droplets (LDs) and toxisomes, both of which participate in DON biosynthesis. The GTPase, helix bundle (HB), transmembrane segment (TM), and cytosolic tail (CT) domains of FgSey1 are essential for its function, but only the TM domain is responsible for its localization. Furthermore, the mutants FgSey1K63A and FgSey1T87A lacked GTPase activity and failed to rescue the defects of the ΔFgsey1 mutant. Collectively, our data suggest that the dynamin-like GTPase protein FgSey1 affects the generation of LDs and toxisomes and is required for DON biosynthesis and pathogenesis in F. graminearumIMPORTANCEFusarium graminearum is a major plant pathogen that causes Fusarium head blight (FHB) of wheats worldwide. In addition to reducing the plant yield, F. graminearum infection of wheats also results in the production of deoxynivalenol (DON) mycotoxins, which are harmful to humans and animals and therefore cause great economic losses through pollution of food products and animal feed. At present, effective strategies for controlling FHB are not available. Therefore, understanding the regulation mechanisms of fungal development, pathogenesis, and DON biosynthesis is important for the development of effective control strategies of this disease. In this study, we demonstrated that a dynamin-like GTPase protein Sey1/atlastin homologue, FgSey1, is required for vegetative growth, DON production, and pathogenicity in F. graminearum Our results provide novel information on critical roles of FgSey1 in fungal pathogenicity; therefore, FgSey1 could be a potential target for effective control of the disease caused by F. graminearum.


Assuntos
Proteínas Fúngicas/genética , Fusarium/fisiologia , Fusarium/patogenicidade , Deleção de Genes , Tricotecenos/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Gotículas Lipídicas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Virulência
16.
Curr Genet ; 66(2): 361-371, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31463774

RESUMO

Enoyl-CoA hydratase (Ech) is an important and well-recognized enzyme that functions in the degradation of fatty acids by ß-oxidation. However, its functions in plant pathogenic fungi are not well known. We characterized an Ech1 orthologue, FgEch1, in Fusarium graminearum. The FgEch1 deletion mutant was defective in the utilization of short-chain fatty acids and conidiation, but not in hyphal growth on glucose-rich media or in perithecium formation. The FgEch1 deletion mutant showed reduced deoxynivalenol (DON) production and virulence in plants. Deletion of FgEch1 also led to increased production of lipid droplets and autophagy. FgEch1, which was localized in the mitochondrion, required the MTS domain for mitochondrial localization and function in F. graminearum. Taken together, these data indicate that mitochondrial FgEch1 is important for conidiation, DON production, and plant infection.


Assuntos
Enoil-CoA Hidratase/metabolismo , Fusarium/enzimologia , Mitocôndrias/enzimologia , Enoil-CoA Hidratase/fisiologia , Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Fusarium/patogenicidade , Mitocôndrias/metabolismo , Fatores de Virulência
17.
Fungal Genet Biol ; 135: 103288, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31704369

RESUMO

Fusarium head blight (FHB) is a wheat disease with a worldwide prevalence, caused by Fusarium graminearum. Peroxisomes are ubiquitous in eukaryotic cells and are involved in various biochemical phenomena. FgPEX2 and FgPEX12 encode RING-finger peroxins PEX2 and PEX12 in F. graminearum. This study aimed to functionally characterize FgPEX2 and FgPEX12 in F. graminearum. We constructed deletion mutants of FgPEX2 and FgPEX12 via homologous recombination. The ΔPEX2 and ΔPEX12 mutants displayed defects in sexual and asexual development, virulence, cell wall integrity (CWI), and lipid metabolism. Deletion of FgPEX2 and FgPEX12 significantly decreased deoxynivalenol production. Furthermore, fluorescence microscopic analysis of the subcellular localization of GFP-PMP70 and GFP-HEX1 revealed that FgPEX2 and FgPEX12 maintain Woronin bodies. These results show that FgPEX2 and FgPEX12 are required for growth, conidiation, virulence, cell wall integrity, and lipid metabolism in F. graminearum and do not influence their peroxisomes.


Assuntos
Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Metabolismo dos Lipídeos/genética , Peroxinas/genética , Parede Celular/genética , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/crescimento & desenvolvimento , Deleção de Genes , Mutação , Peroxissomos/metabolismo , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Triticum/microbiologia , Virulência/genética
18.
Curr Genet ; 65(6): 1383-1396, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31111312

RESUMO

Peroxisomes are ubiquitous single-membrane-bound organelles that perform a variety of biochemical functions in eukaryotic cells. Proteins involved in peroxisomal biogenesis are collectively called peroxins. Currently, functions of most peroxins in phytopathogenic fungi are poorly understood. Here, we report identification of PEX1 and PEX10 in the phytopathogenic fungus, Fusarium graminearum, namely FgPEX1 and FgPEX10, the orthologs of yeast ScPEX1 and ScPEX10. To functionally characterize FgPEX1 and FgPEX10, we constructed deletion mutants of FgPEX1 and FgPEX10 (ΔPEX1 and ΔPEX10) by targeting gene-replacement strategies. Our data demonstrate that both mutants displayed reduced mycelial growth, conidiation, and production of perithecia. Deletion of FgPEX1 and FgPEX10 resulted in a shortage of acetyl-CoA, which is an important reason for the reduced deoxynivalenol production and inhibited virulence of F. graminearum. Moreover, ΔPEX1 and ΔPEX10 showed an increased accumulation of lipid droplets and endogenous reactive oxygen species. In addition, FgPEX1 and FgPEX10 were found to be involved in the maintenance of cell wall integrity and Woronin bodies.


Assuntos
Proteínas Fúngicas/fisiologia , Fusarium/genética , Fusarium/patogenicidade , Peroxinas/fisiologia , Peroxissomos/ultraestrutura , ATPases Associadas a Diversas Atividades Celulares/genética , Acetilcoenzima A/metabolismo , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Fusarium/citologia , Fusarium/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas de Membrana/genética , Microscopia Eletrônica de Transmissão , Peroxinas/genética , Peroxissomos/genética , Peroxissomos/metabolismo , Doenças das Plantas/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Esporos Fúngicos/fisiologia , Tricotecenos/metabolismo , Virulência/genética
19.
Front Microbiol ; 10: 393, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30899249

RESUMO

Fusarium graminearum is one of the causal agents of Fusarium head blight and produces the trichothecene mycotoxin, deoxynivalenol (DON). Thioredoxin reductases (TRRs) play critical roles in the recycling of oxidized thioredoxin. However, their functions are not well known in plant pathogenic fungi. In this study, we characterized a TRR orthologue FgTRR in F. graminearum. The FgTRR-GFP fusion protein localized to the cytoplasm. FgTRR gene deletion demonstrated that FgTRR is involved in hyphal growth, conidiation, sexual reproduction, DON production, and virulence. The ΔTRR mutants also exhibited a defect in pigmentation, the expression level of aurofusarin biosynthesis-related genes was significantly decreased in the FgTRR mutant. Furthermore, the ΔTRR mutants were more sensitive to oxidative stress and aggravated apoptosis-like cell death compared with the wild type strain. Taken together, these results indicate that FgTRR is important in development and pathogenicity in F. graminearum.

20.
J Biosci ; 44(1)2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30837368

RESUMO

Autophagy is a highly conserved intracellular degradation pathway in eukaryotic cells that responds to environmental changes. Genetic analyses have shown that more than 40 autophagy-related genes (ATG) are directly involved in this process in fungi. In addition to Atg proteins, most vesicle transport regulators are also essential for each step of autophagy. The present study showed that one Endoplasmic Reticulum protein in Saccharomyces cerevisiae, Tip20, which controls Golgi-to-ER retrograde transport, was also required for starvation-induced autophagy under high temperature stress. In tip20 conditional mutant yeast, the transport of Atg8 was impaired during starvation, resulting in multiple Atg8 puncta dispersed outside the vacuole that could not be transported to the pre-autophagosomal structure/phagophore assembly site (PAS). Several Atg8 puncta were trapped in ER exit sites (ERES). Moreover, the GFP-Atg8 protease protection assay indicated that Tip20 functions before autophagosome closure. Furthermore, genetic studies showed that Tip20 functions downstream of Atg5 and upstream of Atg1, Atg9 and Atg14 in the autophagy pathway. The present data show that Tip20, as a vesicle transport regulator, has novel roles in autophagy.


Assuntos
Autofagia/genética , Transporte Proteico/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética , Proteína 5 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Retículo Endoplasmático/genética , Complexo de Golgi/genética , Proteínas de Membrana/genética , Mutação , Fagossomos/genética , Proteínas Quinases/genética , Saccharomyces cerevisiae/metabolismo , Vacúolos/genética , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA