Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Hortic Res ; 11(1): uhad231, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38288253

RESUMO

Flavonoids are important compounds in tea leaves imparting bitter and astringent taste, which also play key roles in tea plants responding to environmental stress. Our previous study showed that the expression level of CsMYB67 was positively correlated with the accumulation of flavonoids in tea leaves as exposed to sunlight. Here, we newly reported the function of CsMYB67 in regulating flavonoid biosynthesis in tea leaves. CsMYB67 was localized in the nucleus and responded to temperature. The results of transient expression assays showed the co-transformation of CsMYB67 and CsTTG1 promoted the transcription of CsANS promoter in the tobacco system. CsTTG1 was bound to the promoter of CsANS based on the results of yeast one-hybrid (Y1H) and transient expression assays, while CsMYB67 enhanced the transcription of CsANS through protein interaction with CsTTG1 according to the results of yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC). Thus, CsMYB67-CsTTG1 module enhanced the anthocyanin biosynthesis through up-regulating the transcription of CsANS. Besides, CsMYB67 also enhanced the transcription of CsFLS and CsUFGT through forming transcription factor complexes. The function of CsMYB67 on flavonoid biosynthesis in tea leaves was validated by gene suppression assay. As CsMYB67 was suppressed, the transcriptional level of CsFLS was greatly reduced, leading to a significant increase in the contents of total catechins and total anthocyanidins. Hence, CsMYB67 plays an important role in regulating the downstream pathway of flavonoid biosynthesis in summer tea leaves.

2.
J Adv Res ; 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38151116

RESUMO

INTRODUCTION: Light-harvesting chlorophyll a/b-binding (LHCB) protein complexes of photosystem II are integral to the formation of thylakoid structure and the photosynthetic process. They play an important role in photoprotection, a crucial process in leaf development under low-temperature stress. Nonetheless, potential key genes directly related to low-temperature response and albino phenotype have not been precisely identified in tea plant. Moreover, there are no studies simultaneously investigating multiple albino tea cultivars with different temperature sensitivity. OBJECTIVES: The study aimed to clarify the basic characteristics of CsLHCB gene family members, and identify critical CsLHCB genes potentially influential in leaf color phenotypic variation and low-temperature stress response by contrasting green and albino tea cultivars. Concurrently, exploring the differential expression of the CsLHCB gene family across diverse temperature-sensitive albino tea cultivars. METHODS: We identified 20 putative CsLHCB genes according to phylogenetic analysis. Evolutionary relationships, gene duplication, chromosomal localization, and structures were analyzed by TBtools; the physiological and biochemical characteristics were analyzed by protein analysis websites; the differences in coding sequences and protein accumulation in green and albino tea cultivars, gene expression with maturity were tested by molecular biology technology; and protein interaction was analyzed in the STRING database. RESULTS: All genes were categorized into seven groups, mapping onto 7 chromosomes, including three tandem and one segmental duplications. They all own a conserved chlorophyll A/B binding protein domain. The expression of CsLHCB genes was tissue-specific, predominantly in leaves. CsLHCB5 may play a key role in the process of leaf maturation and senescence. In contrast to CsLHCB5, CsLHCB1.1, CsLHCB2, and CsLHCB3.2 were highly conserved in amino acid sequence between green and albino tea cultivars. In albino tea cultivars, unlike in green cultivars, the expression of CsLHCB1.1, CsLHCB1.2, and CsLHCB2 was down-regulated under low-temperature stress. The accumulation of CsLHCB1 and CsLHCB5 proteins was lower in albino tea cultivars. Greater accumulation of CsLHCB2 protein was detected in RX1 and RX2 compared to other albino cultivars. CONCLUSIONS: CsLHCB1.1, CsLHCB1.2, and CsLHCB2 played a role in the response to low-temperature stress. The amino acid sequence site mutation of CsLHCB5 would distinguish the green and albino tea cultivars. The less accumulation of CsLHCB1 and CsLHCB5 had a potential influence on albino leaves. Albino cultivars more sensitive to temperature exhibited lower CsLHCB gene expression. CsLHCB2 may serve as an indicator of temperature sensitivity differences in albino tea cultivars. This study could provide a reference for further studies of the functions of the CsLHCB family and contribute to research on the mechanism of the albino in tea plant.

3.
Plant Physiol Biochem ; 201: 107875, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37451003

RESUMO

Tea plants (Camellia sinensis) typically contain high-flavonoid phytochemicals like catechins. Recently, new tea cultivars with unique purple-colored leaves have gained attention. These purple tea cultivars are enriched with anthocyanin, which provides an interesting perspective for studying the metabolic flux of the flavonoid pathway. An increasing number of studies are focusing on the leaf color formation of purple tea and this review aims to summarize the latest progress made on the composition and accumulation of anthocyanins in tea plants. In addition, the regulation mechanism in its synthesis will be discussed and a hypothetical regulation model for leaf color transformation during growth will be proposed. Some novel insights are presented to facilitate future in-depth studies of purple tea to provide a theoretical basis for targeted breeding programs in leaf color.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Antocianinas/metabolismo , Proteínas de Plantas/genética , Melhoramento Vegetal , Flavonoides/metabolismo , Folhas de Planta/metabolismo , Chá , Regulação da Expressão Gênica de Plantas , Transcriptoma
4.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37373460

RESUMO

The light-sensitive albino tea plant can produce pale-yellow shoots with high levels of amino acids which are suitable to process high-quality tea. In order to understand the mechanism of the albino phenotype formation, the changes in the physio-chemical characteristics, chloroplast ultrastructure, chlorophyll-binding proteins, and the relevant gene expression were comprehensively investigated in the leaves of the light-sensitive albino cultivar 'Huangjinya' ('HJY') during short-term shading treatment. In the content of photosynthetic pigments, the ultrastructure of the chloroplast, and parameters of the photosynthesis in the leaves of 'HJY' could be gradually normalized along with the extension of the shading time, resulting in the leaf color transformed from pale yellow to green. BN-PAGE and SDS-PAGE revealed that function restoration of the photosynthetic apparatus was attributed to the proper formation of the pigment-protein complexes on the thylakoid membrane that benefited from the increased levels of the LHCII subunits in the shaded leaves of 'HJY', indicating the low level of LHCII subunits, especially the lack of the Lhcb1 might be responsible for the albino phenotype of the 'HJY' under natural light condition. The deficiency of the Lhcb1 was mainly subject to the strongly suppressed expression of the Lhcb1.x which might be modulated by the chloroplast retrograde signaling pathway GUN1 (GENOMES UNCOUPLED 1)-PTM (PHD type transcription factor with transmembrane domains)-ABI4 (ABSCISIC ACID INSENSITIVE 4).


Assuntos
Camellia sinensis , Complexo de Proteína do Fotossistema II , Complexo de Proteína do Fotossistema II/metabolismo , Camellia sinensis/genética , Fotossíntese , Tilacoides/metabolismo , Folhas de Planta/metabolismo , Clorofila/metabolismo
5.
Crit Rev Food Sci Nutr ; : 1-22, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37009832

RESUMO

Matcha, a powder processed from tea leaves, has a unique green tea flavor and appealing color, in addition to many other sought after functional properties for a wide range of formulated food applications (e.g., dairy products, bakery products, and beverage). The properties of matcha are influenced by cultivation method and processing post-harvest. The transition from drinking tea infusion to eating whole leaves provides a healthy option for the delivery of functional component and tea phenolics in various food matrix. The aim of this review is to describe the physico-chemical properties of matcha, the specific requirements for tea cultivation and industrial processing. The quality of matcha mainly depends on the quality of fresh tea leaves, which is affected by preharvest factors including tea cultivar, shading treatment, and fertilization. Shading is the key measure to increase greenness, reduce bitterness and astringency, and enhance umami taste of matcha. The potential health benefits of matcha and the gastrointestinal fate of main phenolics in matcha are covered. The chemical compositions and bioactivities of fiber-bound phenolics in matcha and other plant materials are discussed. The fiber-bound phenolics are considered promising components which endow matcha with boosted bioavailability of phenolics and health benefits through modulating gut microbiota.

6.
Front Nutr ; 9: 1060783, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36545470

RESUMO

Catechins are a cluster of polyphenolic bioactive components in green tea. Anticarcinogenic effects of tea catechins have been reported since the 1980s, but it has been controversial. The present paper reviews the advances in studies on the anticarcinogenic activities of tea and catechins, including epidemiological evidence and anticarcinogenic mechanism. Tea catechins showed antagonistic effects on many cancers, such as gynecological cancers, digestive tract cancers, incident glioma, liver and gallbladder cancers, lung cancer, etc. The mechanism underlying the anticarcinogenic effects of catechins involves in inhibiting the proliferation and growth of cancer cells, scavenging free radicals, suppressing metastasis of cancer cells, improving immunity, interacting with other anticancer drugs, and regulating signaling pathways. The inconsistent results and their causes are also discussed in this paper.

7.
Molecules ; 27(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36557927

RESUMO

Sweet tea is a popular herbal drink in southwest China, and it is usually made from the shoots and tender leaves of Lithocarpus litseifolius. The sweet taste is mainly attributed to its high concentration of dihydrochalcones. The distribution and biosynthesis of dihydrochaldones in sweet tea, as well as neuroprotective effects in vitro and in vivo tests, are reviewed in this paper. Dihydrochalones are mainly composed of phloretin and its glycosides, namely, trilobatin and phloridzin, and enriched in tender leaves with significant geographical specificity. Biosynthesis of the dihydrochalones follows part of the phenylpropanoid and a branch of flavonoid metabolic pathways and is regulated by expression of the genes, including phenylalanine ammonia-lyase, 4-coumarate: coenzyme A ligase, trans-cinnamic acid-4-hydroxylase and hydroxycinnamoyl-CoA double bond reductase. The dihydrochalones have been proven to exert a significant neuroprotective effect through their regulation against Aß deposition, tau protein hyperphosphorylation, oxidative stress, inflammation and apoptosis.


Assuntos
Chalconas , Paladar , Neuroproteção , Chalconas/farmacologia , Chá/genética
8.
Int J Mol Sci ; 23(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35955658

RESUMO

The light-sensitive (LS) albino tea plant grows albinic shoots lacking chlorophylls (Chls) under high-light (HL) conditions, and the albinic shoots re-green under low light (LL) conditions. The albinic shoots contain a high level of amino acids and are preferential materials for processing quality green tea. The young plants of the albino tea cultivars are difficult to be cultivated owing to lacking Chls. The mechanisms of the tea leaf bleaching and re-greening are unknown. We detected the activity and composition of photosystem II (PSII) subunits in LS albino tea cultivar "Huangjinya" (HJY), with a normal green-leaf cultivar "Jinxuan" (JX) as control so as to find the relationship of PSII impairment to the albino phenotype in tea. The PSII of HJY is more vulnerable to HL-stress than JX. HL-induced degradation of PSII subunits CP43, CP47, PsbP, PsbR. and light-harvest chlorophyll-protein complexes led to the exposure and degradation of D1 and D2, in which partial fragments of the degraded subunits were crosslinked to form larger aggregates. Two copies of subunits PsbO, psbN, and Lhcb1 were expressed in response to HL stress. The cDNA sequencing of CP43 shows that there is no difference in sequences of PsbC cDNA and putative amino acids of CP43 between HJY and JX. The de novo synthesis and/or repair of PSII subunits is considered to be involved in the impairment of PSII complexes, and the latter played a predominant role in the albino phenotype in the LS albino tea plant.


Assuntos
Camellia sinensis , Complexo de Proteína do Fotossistema II , Aminoácidos/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Clorofila/metabolismo , DNA Complementar/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
9.
Molecules ; 27(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35566160

RESUMO

Chemicals underlying the floral aroma of dry teas needs multi-dimensional investigations. Green, black, and freeze-dried tea samples were produced from five tea cultivars, and only 'Chunyu2' and 'Jinguanyin' dry teas had floral scents. 'Chunyu2' green tea contained the highest content of total volatiles (134.75 µg/g) among green tea samples, while 'Jinguanyin' black tea contained the highest content of total volatiles (1908.05 µg/g) among black tea samples. The principal component analysis study showed that 'Chunyu2' and 'Jinguanyin' green teas and 'Chunyu2' black tea were characterized by the abundant presence of certain alcohols with floral aroma, while 'Jinguanyin' black tea was discriminated due to the high levels of certain alcohols, esters, and aldehydes. A total of 27 shared volatiles were present in different tea samples, and the contents of 7 floral odorants in dry teas had correlations with those in fresh tea leaves (p < 0.05). Thus, the tea cultivar is crucial to the floral scent of dry tea, and these seven volatiles could be promising breeding indices.


Assuntos
Camellia sinensis , Compostos Orgânicos Voláteis , Álcoois/análise , Camellia sinensis/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Melhoramento Vegetal , Chá/química , Compostos Orgânicos Voláteis/análise
10.
Hortic Res ; 9: uhac049, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35591928

RESUMO

Sugar metabolism and flavonoid biosynthesis vary with the development of tea leaves. In order to understand the regulatory mechanisms underlying the associations between them, a comprehensive transcriptomic analysis of naturally growing tea leaves at different stages of maturity was carried out. Based on weighted gene coexpression network analysis, the key gene modules (Modules 2 and 3) related to the varying relationship between sugar metabolism and flavonoid biosynthesis as well as the corresponding hub genes were obtained. KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis showed that the transcription factors (TFs) in Modules 2 and 3 were mainly enriched in the pathway of plant hormone signal transduction. An in vitro study showed that the transcriptional levels of ERF1B-like TF for hexokinase inhibitor and sucrose treatments were upregulated, being respectively 28.1- and 30.2-fold higher than in the control, suggesting that ERF1B-like TFs participate in the sugar-induced regulation of flavonoid biosynthesis. The results of yeast one-hybrid and dual-luciferase assays demonstrated that CsF3'H, encoding flavonoid 3'-hydroxylase, was the target flavonoid biosynthetic gene for CsERF1B-like TF. Our study identified the potential key regulators participating in the metabolism of sugars and flavonoids, providing new insights into the crosstalk between sugar metabolism and flavonoid biosynthesis in tea plants.

11.
Front Nutr ; 9: 755514, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223940

RESUMO

Squalene is a precursor of steroids with diverse bioactivities. Tea was previously found to contain squalene, but its variation between tea cultivars remains unknown. In this study, tea leaf squalene sample preparation was optimized and the squalene variation among 30 tea cultivars was investigated. It shows that squalene in the unsaponified tea leaf extracts was well separated on gas chromatography profile. Saponification led to a partial loss of squalene in tea leaf extract and so it is not an essential step for preparing squalene samples from tea leaves. The tea leaf squalene content increased with the maturity of tea leaf and the old leaves grown in the previous year had the highest level of squalene among the tested samples. The squalene levels in the old leaves of the 30 tested cultivars differentiated greatly, ranging from 0.289 to 3.682 mg/g, in which cultivar "Pingyun" had the highest level of squalene. The old tea leaves and pruned littering, which are not used in tea production, are an alternative source for natural squalene extraction.

12.
Sci Rep ; 12(1): 1310, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35079059

RESUMO

Epigallocatechin gallate (EGCG) has the effect to protect skin from ultraviolet B (UVB) induced damages, but it is unstable under ambient conditions, being susceptible to become brown in color. Gallocatechin gallate (GCG), an epimer counterpart of EGCG, is more stable chemically than EGCG. The potential effects of GCG against UVB-induced skin damages has not been available. The objective of this study was to investigate the protective effects of GCG against UVB-induced skin photodamages. GCG was topically applied on the skin of hairless mice at three dosage levels (LL, 12.5 mg/mL; ML 25 mg/mL; HL, 50 mg/mL), with EGCG and a commercially available baby sunscreen lotion SPF50 PA+++ as control. The mice were then irradiated by UVB (fluence rate 1.7 µmol/m2 s) for 45 min. The treatments were carried out once a day for 6 consecutive days. Skin measurements and histological studies were performed at the end of experiment. The results show that GCG treatments at ML and HL levels inhibited the increase in levels of skin oil and pigmentation induced by UVB irradiation, and improved the skin elasticity and collagen fibers. GCG at ML and HL levels inhibited the formation of melanosomes and aberrations in mitochondria of UVB-irradiated skin in hairless mice. It is concluded that GCG protected skin from UVB-induced photodamages by improving skin elasticity and collagen fibers, and inhibiting aberrations in mitochondria and formation of melanosomes.


Assuntos
Catequina/análogos & derivados , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Protetores Solares/administração & dosagem , Raios Ultravioleta/efeitos adversos , Administração Cutânea , Animais , Catequina/administração & dosagem , Feminino , Masculino , Melanossomas/efeitos dos fármacos , Melanossomas/efeitos da radiação , Camundongos , Camundongos Pelados , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/efeitos da radiação , Vaselina/administração & dosagem , Doses de Radiação
13.
Foods ; 12(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36613339

RESUMO

Excessive intake of high-caffeine tea will induce health-related risk. Therefore, breeding and cultivating tea cultivars with less caffeine is a feasible way to control daily caffeine intake. Cocoa tea (Camellia ptilophylla Chang) is a wild tea plant which grows leaves with little or no caffeine. However, the vegetative propagation of cocoa tea plants is difficult due to challenges with rooting. Whether natural seeds collected from wild cocoa tea plants can be used to produce less-caffeinated tea remains unknown, because research on the separation of traits among the seed progeny population is lacking. The present study was set to investigate the variation of caffeine and other chemical compositions in seed-propagated plant individuals using colorimetric and HPLC methods. It shows that there were great differences in chemical composition among the seed-propagated population of wild cocoa tea plants, among which some individuals possessed caffeine contents as high as those of normal cultivated tea cultivars (C. sinensis), suggesting that the naturally seed-propagated cocoa tea seedlings are not suitable for directly cultivating leaf materials to produce low-caffeine tea. Therefore, the cocoa tea plants used for harvesting seeds for growing low-caffeine tea plants should be isolated in order to prevent their hybridization with normal cultivated C. sinensis plants. Interestingly, the leaves of cocoa tea seedlings contained high levels of gallocatechin gallate (GCG) and would be a good source of leaf materials for extracting more stable antioxidant, because GCG is a more stable antioxidant than epigallocatechin gallate (EGCG), the dominant component of catechins in normal cultivated tea cultivars. Some plant individuals which contained low levels of caffeine along with high levels of amino acids and medium levels of catechins, are considered to be promising for further screening of less-caffeinated green tea cultivars.

14.
Molecules ; 26(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209485

RESUMO

(-)-Epigallocatechin-3-O-gallate (EGCG), the most abundant component of catechins in tea (Camellia sinensis (L.) O. Kuntze), plays a role against viruses through inhibiting virus invasiveness, restraining gene expression and replication. In this paper, the antiviral effects of EGCG on various viruses, including DNA virus, RNA virus, coronavirus, enterovirus and arbovirus, were reviewed. Meanwhile, the antiviral effects of the EGCG epi-isomer counterpart (+)-gallocatechin-3-O-gallate (GCG) were also discussed.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Catequina/análogos & derivados , Chá/química , Animais , Antivirais/uso terapêutico , Catequina/farmacologia , Catequina/uso terapêutico , Humanos , Internalização do Vírus/efeitos dos fármacos , Vírus/efeitos dos fármacos
15.
Food Chem ; 353: 129428, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33714119

RESUMO

Roasting process impacts the chemical profile and aroma of roasted tea. To compare the impacts of far-infrared irradiation and drum roasting treatments (light, medium and heavy degrees), the corresponding roasted teas were prepared from steamed green tea for chemical analyses and quantitative descriptive analysis on aroma, and correlations between volatiles and aroma attributes were studied. There were 8 catechins, 13 flavonol glycosides and 105 volatiles quantified. Under heavy roasting treatments, most catechins and flavonol glycosides decreased, and aldehydes, ketones, furans, pyrroles/pyrazines, and miscellaneous greatly increased, while far-infrared irradiated teas had distinct nutty aroma compared with the roasty and burnt odor of drum roasted teas. The weighted correlation network analysis result showed that 56 volatiles were closely correlated with the aroma attributes of roasted teas. This study reveals the differential chemical and sensory changes of roasted teas caused by different roasting processes, and provides a novel way for flavor chemistry study.


Assuntos
Chá/química , Compostos Orgânicos Voláteis/análise , Catequina/análise , Análise por Conglomerados , Culinária/métodos , Flavonoides/análise , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Raios Infravermelhos , Odorantes/análise , Análise de Componente Principal , Chá/metabolismo
16.
Food Chem ; 339: 128088, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979714

RESUMO

Flavonol glycosides are associated with astringency and bitterness of teas. To clarify the dominant enzymatic reaction of flavonol glycosides in tea leaves, the catalytic effects of polyphenol oxidase (PPO), peroxidase (POD) and ß-glucosidase were studied, with the maintaining rates of total flavonol glycosides (TFG) being 73.0%, 99.8% and 94.3%. PPO was selected for further investigations, including the effects of pH value (3.5 ~ 6.5), temperature (25 °C ~ 55 °C) and dosage (39 ~ 72 U/mL PPO and 36 U/mL PPO, 3 ~ 36 U/mL POD). The oxidation of flavonol glycosides were intensified at pH 6.5, with 51.8% and 15.4% of TFG maintained after PPO and PPO + POD treatments, suggesting an enhancement from POD. The sensitivity ranking to PPO was: myricetin glycosides > quercetin glycosides > kaempferol glycosides. The inhibitor treatment testified the leading role of PPO in catalyzing flavonol glycosides in tea leaves. Sugar moiety enhanced the docking affinity of flavonol glycosides for PPO. PPO shows the potential of modifying flavonol glycoside composition.


Assuntos
Camellia sinensis/metabolismo , Catecol Oxidase/metabolismo , Flavonóis/metabolismo , Folhas de Planta/metabolismo , Camellia sinensis/química , Catecol Oxidase/química , Flavonoides/química , Flavonoides/metabolismo , Flavonóis/química , Glicosídeos/química , Concentração de Íons de Hidrogênio , Quempferóis/química , Quempferóis/metabolismo , Oxirredução , Peroxidase/química , Peroxidase/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Folhas de Planta/química , Chá/química , Temperatura , beta-Glucosidase/química , beta-Glucosidase/metabolismo
17.
Food Funct ; 12(1): 57-69, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33241826

RESUMO

Allergy is an immune-mediated disease with increasing prevalence worldwide. Regular treatment with glucocorticoids and antihistamine drugs for allergy patients is palliative rather than permanent. Daily use of dietary anti-allergic natural products is a superior way to prevent allergy and alleviate the threat. Tea, as a health-promoting beverage, has multiple compounds with immunomodulatory ability. Persuasive evidence has shown the anti-allergic ability of tea against asthma, food allergy, atopic dermatitis and anaphylaxis. Recent advances in potential anti-allergic ability of tea and anti-allergic compounds in tea have been reviewed in this paper. Tea exerts its anti-allergic effect mainly by reducing IgE and histamine levels, decreasing FcεRI expression, regulating the balance of Th1/Th2/Th17/Treg cells and inhibiting related transcription factors. Further research perspectives are also discussed.


Assuntos
Antialérgicos/imunologia , Antialérgicos/uso terapêutico , Hipersensibilidade/imunologia , Hipersensibilidade/prevenção & controle , Chá/imunologia , Humanos
18.
J Agric Food Chem ; 68(47): 14071-14080, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33196171

RESUMO

Amino acids are very important for oolong tea brisk-smooth mouthfeel which is mainly associated with bruising and withering treatment (BWT). In this study, metabolome and transcriptome analyses were performed to comprehensively investigate the changes in abundance of amino acids and the expression pattern of relevant genes during BWT of oolong tea manufacturing. Levels of most amino acids increased during BWT in the leaves harvested from 4 cultivars, while expression of the relevant function genes responsible for synthesis and transformation of amino acids up-regulated accordingly. Upstream hub genes including receptor-like protein kinase IKU2, serine/threonine-protein kinase PBL11, MYB transcription factor MYB2, ethylene-responsive transcription factor ERF114, WRKY transcription factor WRKY71, aspartate aminotransferase AATC, UDP-glycosyltransferase U91D1, and 4-hydroxy-4-methyl-2-oxoglutarate aldolase 2 RRAA2, were predicted to be involved in regulation of the function genes expression and the amino acids metabolism through weighted gene coexpression network analysis. A modulation mechanism for accumulation of amino acids during BWT was also proposed. These findings give a deep insight into the metabolic reprogramming mechanism of amino acids during BWT of oolong tea.


Assuntos
Camellia sinensis , Aminoácidos , Metaboloma , Folhas de Planta , Chá
19.
J Agric Food Chem ; 68(39): 10750-10762, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32818378

RESUMO

Accumulation of secondary metabolites in the young shoots of tea plants is developmentally modulated, especially flavonoids. Here, we investigate the developmental regulation mechanism of secondary metabolism in the developing leaves of tea plants using an integrated multiomic approach. For the pair of Leaf2/Bud, the correlation coefficient of the fold change of mRNA and RPFs abundances involved in flavonoid biosynthesis was 0.9359, being higher than that of RPFs and protein (R2 = 0.6941). These correlations were higher than the corresponding correlation coefficients for secondary metabolisms and genome-wide scale. Metabolomic analysis demonstrates that the developmental modulations of the structural genes for flavonoid biosynthesis-related pathways align with the concentration changes of catechin and flavonol glycoside groups. Relatively high translational efficiency (TE > 2) was observed in the four flavonoid structural genes (chalcone isomerase, dihydroflavonol 4-reductase, anthocyanidin synthase, and flavonol synthase). In addition, we originally provided the information on identified small open reading frames (small ORFs) and main ORFs in tea leaves and elaborated that the presence of upstream ORFs may have a repressive effect on the translation of downstream ORFs. Our data suggest that transcriptional regulation coordinates with translational regulation and may contribute to the elevation of translational efficiencies for the structural genes involved in the flavonoid biosynthesis pathways during tea leaf development.


Assuntos
Camellia sinensis/crescimento & desenvolvimento , Camellia sinensis/genética , Brotos de Planta/metabolismo , Metabolismo Secundário , Camellia sinensis/química , Camellia sinensis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/química , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Transcriptoma
20.
Front Nutr ; 7: 596823, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392238

RESUMO

Theacrine, i.e., 1,3,7,9-tetramethyluric acid, is one of the major purine alkaloids found in leaf of a wild tea plant species Camellia kucha Hung T. Chang. Theacrine has been attracted great attentions academically owing to its diverse health benefits. Present review examines the advances in the research on the health beneficial effects of theacrine, including antioxidant effect, anti-inflammatory effect, locomotor activation and reducing fatigue effects, improving cognitive effect, hypnotic effect, ameliorating lipid metabolism and inhibiting breast cancer cell metastasis effect. The inconsistent results in this research field and further expectations were also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA