Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1367040, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745661

RESUMO

Background: In recent years, immunotherapy has been emerging as a promising alternative therapeutic method for cancer patients, offering potential benefits. The expression of PD-L1 by tumors can inhibit the T-cell response to the tumor and allow the tumor to evade immune surveillance. To address this issue, cancer immunotherapy has shown promise in disrupting the interaction between PD-L1 and its ligand PD-1. Methods: We used mirror-image phage display technology in our experiment to screen and determine PD-L1 specific affinity peptides (PPL-C). Using CT26 cells, we established a transplanted mouse tumor model to evaluate the inhibitory effects of PPL-C on tumor growth in vivo. We also demonstrated that PPL-C inhibited the differentiation of T regulatory cells (Tregs) and regulated the production of cytokines. Results: In vitro, PPL-C has a strong affinity for PD-L1, with a binding rate of 0.75 µM. An activation assay using T cells and mixed lymphocytes demonstrated that PPL-C inhibits the interaction between PD-1 and PD-L1. PPL-C or an anti-PD-L1 antibody significantly reduced the rate of tumor mass development in mice compared to those given a control peptide (78% versus 77%, respectively). The results of this study demonstrate that PPL-C prevents or retards tumor growth. Further, immunotherapy with PPL-C enhances lymphocyte cytotoxicity and promotes proliferation in CT26-bearing mice. Conclusion: PPL-C exhibited antitumor and immunoregulatory properties in the colon cancer. Therefore, PPL-C peptides of low molecular weight could serve as effective cancer immunotherapy.


Assuntos
Antígeno B7-H1 , Imunoterapia , Peptídeos , Animais , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Camundongos , Peptídeos/imunologia , Linhagem Celular Tumoral , Imunoterapia/métodos , Humanos , Linfócitos T Reguladores/imunologia , Feminino , Camundongos Endogâmicos BALB C , Receptor de Morte Celular Programada 1/imunologia , Citocinas/metabolismo , Ativação Linfocitária/imunologia , Imunomodulação/efeitos dos fármacos , Neoplasias do Colo/terapia , Neoplasias do Colo/imunologia
2.
Biol Trace Elem Res ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38351346

RESUMO

Diabetes is a serious metabolic disorder characterized by abnormal glucose levels in the body. Delayed wound healing is a severe diabetes complication. Nanotechnology represents the latest advancement in treating diabetic wounds through nanoparticles (NPs). In this study, silver nanoparticles (AgNPs) were synthesized using a green method involving cucumber pulp extract. The synthesis was confirmed using techniques including ultraviolet-visible spectrophotometry (UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX). To evaluate wound-healing properties, mouse models were utilized with wounds induced by excision on the dorsal surface. An ointment containing silver nanoparticles was applied to assess its healing potential. Additionally, antibacterial and antioxidant activities were examined using agar well diffusion and DPPH scavenging methods, respectively. The results demonstrated that the ointment prepared with green synthesized AgNPs effectively healed the wounds within 15 days, while also exhibiting antibacterial and antioxidant properties. Therefore, it can be concluded that due to its efficacy in biological activities, silver nanoparticles can be employed in the treatment of diabetic wounds.

3.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397105

RESUMO

Acquired Immunodeficiency Syndrome is caused by the Human Immunodeficiency Virus (HIV), and a significant number of fatalities occur annually. There is a dire need to develop an effective vaccine against HIV-1. Understanding the structural proteins of viruses helps in designing a vaccine based on immunogenic peptides. In the current experiment, we identified gp120 epitopes using bioinformatic epitope prediction tools, molecular docking, and MD simulations. The Gb-1 peptide was considered an adjuvant. Consecutive sequences of GTG, GSG, GGTGG, and GGGGS linkers were used to bind the B cell, Cytotoxic T Lymphocytes (CTL), and Helper T Lymphocytes (HTL) epitopes. The final vaccine construct consisted of 315 amino acids and is expected to be a recombinant protein of approximately 35.49 kDa. Based on docking experiments, molecular dynamics simulations, and tertiary structure validation, the analysis of the modeled protein indicates that it possesses a stable structure and can interact with Toll-like receptors. The analysis demonstrates that the proposed vaccine can provoke an immunological response by activating T and B cells, as well as stimulating the release of IgA and IgG antibodies. This vaccine shows potential for HIV-1 prophylaxis. The in-silico design suggests that multiple-epitope constructs can be used as potentially effective immunogens for HIV-1 vaccine development.


Assuntos
Epitopos , Infecções por HIV , HIV-1 , Vacinas , Humanos , Sequência de Aminoácidos , Biologia Computacional , Imunidade , Imunoinformática , Simulação de Acoplamento Molecular , Peptídeos , Vacinas de Subunidades Antigênicas
4.
Front Immunol ; 14: 1249133, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965312

RESUMO

Human Immunodeficiency Virus (HIV-1) is known to establish a persistent latent infection. The use of combination antiretroviral therapy (cART) can effectively reduce the viral load, but the treatment can be costly and may lead to the development of drug resistance and life-shortening side effects. It is important to develop an ideal and safer in vivo target therapy that will effectively block viral replication and expression in the body. Exosomes have recently emerged as a promising drug delivery vehicle due to their low immunogenicity, nanoscale size (30-150nm), high biocompatibility, and stability in the targeted area. Exosomes, which are genetically produced by different types of cells such as dendritic cells, neurons, T and B cells, epithelial cells, tumor cells, and mast cells, are designed for efficient delivery to targeted cells. In this article, we review and highlight recent developments in the strategy and application of exosome-based HIV-1 vaccines. We also discuss the use of exosome-based antigen delivery systems in vaccine development. HIV-1 antigen can be loaded into exosomes, and this modified cargo can be delivered to target cells or tissues through different loading approaches. This review also discusses the immunological prospects of exosomes and their role as biomarkers in disease progression. However, there are significant administrative and technological obstacles that need to be overcome to fully harness the potential of exosome drug delivery systems.


Assuntos
Exossomos , HIV-1 , Humanos , Exossomos/metabolismo , Sistemas de Liberação de Medicamentos , Desenvolvimento de Vacinas
5.
Transl Cancer Res ; 11(10): 3548-3571, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36388030

RESUMO

Background: Prostate cancer (PCa) has the second highest morbidity and mortality rates in men. Concurrently, novel diagnostic and prognostic biomarkers of PCa remain crucial. Methods: This study utilized integrated bioinformatics method to identify and validate the potential hub genes with high diagnostic and prognostic value for PCa. Results: Four Gene Expression Omnibus (GEO) datasets including 123 PCa samples and 76 normal samples were screened and a total of 368 differentially expressed genes (DEGs), including 120 up-regulated DEGs and 248 down-regulated DEGs, were identified. Subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the DEGs were majorly enriched in focal adhesion, chemical carcinogenesis, drug metabolism, and cytochrome P450 pathways. Then, 11 hub genes were identified from the protein-protein interaction (PPI) network of the DEGs; 7 of the 11 genes showed the ability of distinguishing PCa from normal prostate based on receiver operating characteristic (ROC) curve analysis. And 5 of the 11 genes were correlated with clinical attributes. Lower CAV1, KRT5, SNAI2 and MYLK expression level were associated with higer Gleason score, advanced pathological T stage and N stage. Lower KRT5 and MYLK expression level were significantly correlated with poor disease-free survival, and lower KRT5 and PTGS2 expression level were significantly related to biochemical recurrence (BCR) status of PCa patients. Conclusions: In conclusion, CAV1, KRT5, SNAI2, and MYLK show potential clinical diagnostic and prognostic value and could be used as novel candidate biomarkers and therapeutic targets for PCa.

6.
Atherosclerosis ; 361: 18-29, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36306655

RESUMO

BACKGROUND AND AIMS: ApoEb is a zebrafish homologous to mammalian ApoE, whose deficiency would lead to lipid metabolism disorders (LMDs) like atherosclerosis. We attempted to knock out the zebrafish ApoEb, then establish a zebrafish model with LMD. METHODS: ApoEb was knocked out using the CRISPR/Cas9 system, and the accumulation of lipids was confirmed by Oil Red O staining, confocal imaging, and lipid measurements. The lipid-lowering effects of simvastatin (SIM), ezetimibe (EZE) and Xuezhikang (XZK), an extract derived from red yeast rice, were evaluated through in vivo imaging in zebrafish larvae. RESULTS: In the ApoEb mutant, significant vascular lipid deposition occurred, and lipid measurement performed in the whole-body homogenate of larvae and adult plasma showed significantly increased lipid levels. SIM, EZE and XZK apparently relieved hyperlipidemia in ApoEb mutants, and XZK had a significant inhibitory effect on the recruitment of neutrophils and macrophages. CONCLUSIONS: In this study, an LMD model has been established in ApoEb mutant zebrafish. We suggest that this versatile model could be applied in studying hypercholesterolemia and related vascular pathology in the context of early atherosclerosis, as well as the physiological function of ApoE.


Assuntos
Aterosclerose , Hipercolesterolemia , Hiperlipidemias , Animais , Peixe-Zebra/metabolismo , Metabolismo dos Lipídeos , Hipercolesterolemia/metabolismo , Ezetimiba , Aterosclerose/patologia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Sinvastatina/farmacologia , Mamíferos/metabolismo
7.
Acta Pharmacol Sin ; 42(3): 414-421, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32555443

RESUMO

In the past two decades, purinergic signaling has emerged as a key regulator of hematopoiesis in physiological and pathological conditions. ADP receptor P2y12 is a crucial component of this signaling, but whether it is involved in primitive hematopoiesis remains unknown. To elucidate the function of P2y12 and provide new insights for drug development, we established a zebrafish P2y12 mutant by CRISPR/Cas 9-based genetic modification system, and investigated whether P2y12 acted as an important regulator for primitive hematopoiesis. By using mass spectrometry (MS) combined with RNA sequencing, we showed that absence of P2y12 induced excessive erythropoiesis, evidenced by significantly increased expression of mature erythrocytes marker α-globin (Hbae1 and Hbae3), ß-globin (Hbbe1 and Hbbe3). Expression pattern analysis showed that P2y12 was mainly expressed in red blood cells and endothelial cells of early zebrafish embryos. Further studies revealed that primitive erythroid progenitor marker Gata1 was markedly up-regulated. Remarkably, inhibition of Gata1 by injection of Gata1 morpholino could rescue the erythroid abnormality in P2y12 mutants. The present study demonstrates the essential role of purinergic signaling in differentiation of proerythrocytes during primitive hematopoiesis, and provides potential targets for treatment of blood-related disease and drug development.


Assuntos
Fator de Transcrição GATA1/antagonistas & inibidores , Hematopoese/fisiologia , Receptores Purinérgicos P2Y12/fisiologia , Proteínas de Peixe-Zebra/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Diferenciação Celular/fisiologia , Embrião não Mamífero/fisiologia , Endotélio Vascular/fisiologia , Eritrócitos/fisiologia , Feminino , Fator de Transcrição GATA1/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Técnicas de Inativação de Genes , Hematopoese/genética , Masculino , Mutação , Receptores Purinérgicos P2Y12/genética , Regulação para Cima/fisiologia , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
8.
Front Genet ; 9: 559, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30532766

RESUMO

Total anomalous pulmonary venous connection (TAPVC) is a rare congenital heart anomaly. Several genes have been associated TAPVC but the mechanisms remain elusive. To search novel CNVs and candidate genes, we screened a cohort of 78 TAPVC cases and 100 healthy controls for rare copy number variants (CNVs) using whole exome sequencing (WES). Then we identified pathogenic CNVs by statistical comparisons between case and control groups. After that, we identified altogether eight pathogenic CNVs of seven candidate genes (PCSK7, RRP7A, SERHL, TARP, TTN, SERHL2, and NBPF3). All these seven genes have not been described previously to be related to TAPVC. After network analysis of these candidate genes and 27 known pathogenic genes derived from the literature and publicly database, PCSK7 and TTN were the most important genes for TAPVC than other genes. Our study provides novel candidate genes potentially related to this rare congenital birth defect (CHD) which should be further fundamentally researched and discloses the possible molecular pathogenesis of TAPVC.

9.
EBioMedicine ; 38: 217-227, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30448225

RESUMO

BACKGROUND: Total anomalous pulmonary venous connection (TAPVC) is recognized as a rare congenital heart defect (CHD). With a high mortality rate of approximately 80%, the survival rate and outcomes of TAPVC patients are not satisfactory. However, the genetic aetiology and mechanism of TAPVC remain elusive. This study aimed to investigate the underlying genomic risks of TAPVC through next-generation sequencing (NGS). METHODS: Rare variants were identified through whole exome sequencing (WES) of 78 sporadic TAPVC cases and 100 healthy controls using Fisher's exact test and gene-based burden test. We then detected candidate gene expression patterns in cells, pulmonary vein tissues, and embryos. Finally, we validated these genes using target sequencing (TS) in another 100 TAPVC cases. FINDINGS: We identified 42 rare variants of 7 genes (CLTCL1, CST3, GXYLT1, HMGA2, SNAI1, VAV2, ZDHHC8) in TAPVC cases compared with controls. These genes were highly expressed in human umbilical vein endothelial cells (HUVECs), mouse pulmonary veins and human embryonic hearts. mRNA levels of these genes in human pulmonary vein samples were significantly different between cases and controls. Through network analysis and expression patterns in zebrafish embryos, we revealed that SNAI1, HMGA2 and VAV2 are the most important genes for TAPVC. INTERPRETATION: Our study identifies novel candidate genes potentially related to TAPVC and elucidates the possible molecular pathogenesis of this rare congenital birth defect. Furthermore, SNAI1, HMGA2 and VAV2 are novel TAPVC candidate genes that have not been reported previously in either humans or animals. FUND: National Natural Science Foundation of China.


Assuntos
Estudos de Associação Genética , Variação Genética , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Veias Pulmonares/anormalidades , Alelos , Substituição de Aminoácidos , Animais , Pré-Escolar , Biologia Computacional/métodos , Angiografia por Tomografia Computadorizada , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Testes Genéticos , Genoma Humano , Estudo de Associação Genômica Ampla , Cardiopatias Congênitas/mortalidade , Humanos , Lactente , Masculino , Mutação , Polimorfismo de Nucleotídeo Único , Taxa de Sobrevida , Sequenciamento Completo do Genoma , Peixe-Zebra
10.
Arterioscler Thromb Vasc Biol ; 36(12): 2381-2393, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27789478

RESUMO

OBJECTIVE: MicroRNA-126 (miR-126) is an endothelium-enriched miRNA and functions in vascular integrity and angiogenesis. The application of miRNA as potential biomarker and therapy target has been widely investigated in various pathological processes. However, its role in lymphatic diseases had not been widely explored. We aimed to reveal the role of miR-126 in lymphangiogenesis and the regulatory signaling pathways for potential targets of therapy. APPROACH AND RESULTS: Loss-of-function studies using morpholino oligonucleotides and CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) system showed that silencing of miR-126a severely affected the formation of parachordal lymphangioblasts and thoracic duct in zebrafish embryos, although their development in miR-126b knockdown embryos was normal. Expression analyses by in situ hybridization and immunofluorescence indicated that miR-126a was expressed in lymphatic vessels, as well as in blood vessels. Time-lapse confocal imaging assay further revealed that knockdown of miR-126a blocked both lymphangiogenic sprouts budding from the posterior cardinal vein and lymphangioblasts extension along horizontal myoseptum. Bioinformatics analysis and in vivo report assay identified that miR-126a upregulated Cxcl12a by targeting its 5' untranslated region. Moreover, loss- and gain-of-function studies revealed that Cxcl12a signaling acted downstream of miR-126a during parachordal lymphangioblast extension, whereby Flt4 signaling acts as a cooperator of miR-126a, allowing it to modulate lymphangiogenic sprout formation. CONCLUSIONS: These findings demonstrate that miR-126a directs lymphatic endothelial cell sprouting and extension by interacting with Cxcl12a-mediated chemokine signaling and Vegfc-Flt4 signal axis. Our results suggest that these key regulators of lymphangiogenesis may be involved in lymphatic pathogenesis of cardiovascular diseases.


Assuntos
Quimiocina CXCL12/metabolismo , Linfangiogênese , MicroRNAs/metabolismo , Transdução de Sinais , Ducto Torácico/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Movimento Celular , Proliferação de Células , Quimiocina CXCL12/genética , Biologia Computacional , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Genótipo , Linfografia , MicroRNAs/genética , Microscopia Confocal , Morfolinos/genética , Morfolinos/metabolismo , Fenótipo , Ducto Torácico/embriologia , Fatores de Tempo , Imagem com Lapso de Tempo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA