RESUMO
The NLRP3 inflammasome is a key multi-protein complex controlling inflammation, particularly interleukin-1ß (IL-1ß) production. Here, we present a protocol to profile spatially resolved NLRP3 inflammasome complexes using ascorbic peroxidase 2 (APEX2)-based proximity labeling combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). We describe steps for design and generation of the fusion construct, characterization of the stable FLAG-NLRP3-APEX2 expression cell line by western blotting/imaging, biotinylated proteome enrichment, and mass spectrometry analysis. For complete details on the use and execution of this protocol, please refer to Liang et al.1.
RESUMO
Activating enhancer-binding protein 2 (AP-2) is a family of transcription factors (TFs) that play crucial roles in regulating embryonic and oncogenic development. In addition to splice isoforms, five major family members encoded by the TFAP2A/B/C/D/E genes have been identified in humans, i.e., AP-2α/ß/γ/δ/ε. In general, the first three TFs have been studied more thoroughly than AP-2δ or AP-2ε. Currently, there is a relatively limited body of literature focusing on the AP-2 family in the context of gastroenterological research, and a comprehensive overview of the existing knowledge and recommendations for further research directions is lacking. Herein, we have collected available gastroenterological data on AP-2 TFs, discussed the latest medical applications of each family member, and proposed potential future directions. Research on AP-2 in gastrointestinal tumors has predominantly been focused on the two best-described family members, AP-2α and AP-2γ. Surprisingly, research in the past decade has highlighted the importance of AP-2ε in the drug resistance of gastric cancer (GC) and colorectal cancer (CRC). While numerous questions about gastroenterological disorders await elucidation, the available data undoubtedly open avenues for anti-cancer targeted therapy and overcoming chemotherapy resistance. In addition to gastrointestinal cancers, AP-2 family members (primarily AP-2ß and marginally AP-2γ) have been associated with other health issues such as obesity, type 2 diabetes, liver dysfunction, and pseudo-obstruction. On the other hand, AP-2δ has been poorly investigated in gastroenterological disorders, necessitating further research to delineate its role. In conclusion, despite the limited attention given to AP-2 in gastroenterology research, pivotal functions of these transcription factors have started to emerge and warrant further exploration in the future.
Assuntos
Fator de Transcrição AP-2 , Humanos , Fator de Transcrição AP-2/metabolismo , Fator de Transcrição AP-2/genética , Gastroenteropatias/genética , Gastroenteropatias/metabolismo , AnimaisRESUMO
Background: Ovarian cancer (OV) is regarded as one of the most lethal malignancies affecting the female reproductive system, with individuals diagnosed with OV often facing a dismal prognosis due to resistance to chemotherapy and the presence of an immunosuppressive environment. T cells serve as a crucial mediator for immune surveillance and cancer elimination. This study aims to analyze the mechanism of T cell-associated markers in OV and create a prognostic model for clinical use in enhancing outcomes for OV patients. Methods: Based on the single-cell dataset GSE184880, this study used single-cell data analysis to identify characteristic T cell subsets. Analysis of high dimensional weighted gene co-expression network analysis (hdWGCNA) is utilized to identify crucial gene modules along with their corresponding hub genes. A grand total of 113 predictive models were formed utilizing ten distinct machine learning algorithms along with the combination of the cancer genome atlas (TCGA)-OV dataset and the GSE140082 dataset. The most dependable clinical prognostic model was created utilizing the leave one out cross validation (LOOCV) framework. The validation process for the models was achieved by conducting survival curve analysis and receiver operating characteristic (ROC) analysis. The relationship between risk scores and immune cells was explored through the utilization of the Cibersort algorithm. Additionally, an analysis of drug sensitivity was carried out to anticipate chemotherapy responses across various risk groups. The genes implicated in the model were authenticated utilizing qRT-PCR, cell viability experiments, and EdU assay. Results: This study developed a clinical prognostic model that includes ten risk genes. The results obtained from the training set of the study indicate that patients classified in the low-risk group experience a significant survival advantage compared to those in the high-risk group. The ROC analysis demonstrates that the model holds significant clinical utility. These results were verified using an independent dataset, strengthening the model's precision and dependability. The risk assessment provided by the model also serves as an independent prognostic factor for OV patients. The study also unveiled a noteworthy relationship between the risk scores calculated by the model and various immune cells, suggesting that the model may potentially serve as a valuable tool in forecasting responses to both immune therapy and chemotherapy in ovarian cancer patients. Notably, experimental evidence suggests that PFN1, one of the genes included in the model, is upregulated in human OV cell lines and has the capacity to promote cancer progression in in vitro models. Conclusion: We have created an accurate and dependable clinical prognostic model for OV capable of predicting clinical outcomes and categorizing patients. This model effectively forecasts responses to both immune therapy and chemotherapy. By regulating the immune microenvironment and targeting the key gene PFN1, it may improve the prognosis for high-risk patients.
RESUMO
BACKGROUND: Recent studies have found that ferroptosis-related genes (FRGs) have broad applications in tumor therapy. However, the predictive potential of these genes in lung adenocarcinoma (LUAD) remains to be fully characterized. We aimed to investigate the FRGs that might be potential targets for LUAD. METHODS: We screened the RNA sequencing samples from LUAD patients from the GEO database and analyzed the ferroptosis-related differentially expressed genes (DEGs). A functional analysis of DEGs was performed. The risk model was constructed to evaluation and validation FRGs. We explored the immune landscape of LUAD and controls. The value of FRGs in diagnosing LUAD was tested in the GSE30219, GSE37745, GSE0081 datasets, and qPCR was used to verify their diagnostic value in LUAD patients in our hospital. RESULTS: A total of 1327 DEGs in quantitative proteomics were obtained, of which ferroptosis-related DEGs were 259. Enrichment analysis showed significant enrichment in the absorption and metabolism of fatty acids and arachidonic acid. The upregulated genes (GCLC, RRM2, AURKA, SLC7A5, and SLC2A1) and downregulated genes (ANGPTL7, ALOX15, ALOX15B, HSD17B11, IL33, TSC22D3, and DUOX1) were selected as core genes in tissue samples from 62 patients by qPCR. DUOX1 and HSD17B11 were obtained by bioinformatics analysis, both of which showed similar expression trends at the RNA and protein levels. The Kaplan-Meier method showed that DUOX1 and HSD17B11 were closely related to the overall survival (OS) of LUAD patients. CONCLUSION SUBSECTIONS: Ferroptosis-related genes DUOX1 and HSD17B11 are of considerable value in the diagnosis of LUAD patients. Their low expression suggests an increased recurrence rate and leads to a decrease in the patient quality of life.
Assuntos
Adenocarcinoma de Pulmão , Oxidases Duais , Ferroptose , Neoplasias Pulmonares , Microambiente Tumoral , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , 20-Hidroxiesteroide Desidrogenases , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Oxidases Duais/genética , Estradiol Desidrogenases/genética , Ferroptose/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Prognóstico , Microambiente Tumoral/genética , Microambiente Tumoral/imunologiaRESUMO
Immune checkpoint inhibitor (ICI) therapy, which targets programmed cell death protein 1, has demonstrated enhanced survival outcomes in numerous patients with cancer. Historically, individuals with autoimmune diseases have been excluded from clinical trials involving cancer immunotherapies due to concerns about the potential worsening of their underlying autoimmune conditions. In the present case report, a patient with non-small cell lung cancer and bullous pemphigoid (BP) who underwent treatment with the ICI pembrolizumab is described. In this specific clinical case, no severe exacerbation of the underlying autoimmune disease was observed. Contrarily, the patient not only tolerated pembrolizumab well but also experienced amelioration of the BP lesions after the treatment. This case challenges the conventional exclusion criteria for ICI therapy in patients with autoimmune diseases, suggesting the potential safety and efficacy of such treatments in this specific population. However, further investigations and larger-scale studies are warranted to validate these findings and provide a more comprehensive understanding of the implications of ICI therapy in patients with autoimmune comorbidities.
RESUMO
The aim of this study was to develop a medical imaging and comprehensive stacked learning-based method for predicting high- and low-risk thymoma. A total of 126 patients with thymomas and 5 patients with thymic carcinoma treated at our institution, including 65 low-risk patients and 66 high-risk patients, were retrospectively recruited. Among them, 78 patients composed the training cohort, while the remaining 53 patients formed the validation cohort. We extracted 1702 features each from the patients' arterial-, venous-, and plain-phase images. Pairwise subtraction of these features yielded 1702 arterial-venous, arterial-plain, and venous-plain difference features each. The MannâWhitney U test and least absolute shrinkage and selection operator (LASSO) and SelectKBest methods were employed to select the best features from the training set. Six models were built with a stacked learning algorithm. By applying stacked ensemble learning, three machine learning algorithms (XGBoost, multilayer perceptron (MLP), and random forest) were combined by XGBoost to produce the the six basic imaging models. Then, the XGBoost algorithm was applied to the six basic imaging models to construct a combined radiomic model. Finally, the radiomic model was combined with clinical information to create a nomogram that could easily be used in clinical practice to predict the thymoma risk category. The areas under the curve (AUCs) of the combined radiomic model in the training and validation cohorts were 0.999 (95% CI 0.988-1.000) and 0.967 (95% CI 0.916-1.000), respectively, while those of the nomogram were 0.999 (95% CI 0.996-1.000) and 0.983 (95% CI 0.990-1.000). This study describes the application of CT-based radiomics in thymoma patients and proposes a nomogram for predicting the risk category for this disease, which could be advantageous for clinical decision-making for affected patients.
Assuntos
Aprendizado de Máquina , Timoma , Neoplasias do Timo , Tomografia Computadorizada por Raios X , Humanos , Timoma/diagnóstico por imagem , Timoma/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X/métodos , Neoplasias do Timo/diagnóstico por imagem , Neoplasias do Timo/patologia , Adulto , Estudos Retrospectivos , Idoso , Medição de Risco/métodos , Algoritmos , Nomogramas , RadiômicaRESUMO
BACKGROUND: The progression of non-small cell lung cancer (NSCLC) is significantly influenced by circular RNAs (circRNAs), especially in tumor hypoxia microenvironment. However, the precise functions and underlying mechanisms of dysregulated circRNAs in NSCLC remain largely unexplored. METHODS: Differentially expressed circRNAs in NSCLC tissues were identified through high-throughput RNA sequencing. The characteristics of circ_0007386 were rigorously confirmed via Sanger sequencing, RNase R treatment and actinomycin D treatment. The effects of circ_0007386 on proliferation and apoptosis were investigated using CCK8, cloning formation assays, TUNEL staining, and flow cytometry assays in vitro. In vivo, xenograft tumor models were used to evaluate its impact on proliferation. Mechanistically, the regulatory relationships of circ_0007386, miR-383-5p and CIRBP were examined through dual luciferase reporter assays and rescue experiments. Additionally, we detected the binding of EIF4A3 to CRIM1 pre-mRNA by RNA immunoprecipitation and the interaction between YAP1 and EIF4A3 under hypoxic conditions by co-immunoprecipitation. RESULTS: Our investigation revealed a novel circRNA, designated as circ_0007386, that was upregulated in NSCLC tissues and cell lines. Circ_0007386 modulated proliferation and apoptosis in NSCLC both in vitro and in vivo. Functionally, circ_0007386 acted as a sponge for miR-383-5p, targeting CIRBP, which influenced NSCLC cell proliferation and apoptosis via the PI3K/AKT signaling pathway. Furthermore, under hypoxic conditions, the interaction between YAP1 and EIF4A3 was enhanced, leading to the displacement of EIF4A4 from binding to CRIM1 pre-mRNA. This facilitated the back-splicing of CRIM1 pre-mRNA, increasing the formation of circ_0007386. The circ_0007386/miR-383-5p/CIRBP axis was significantly associated with the clinical features and prognosis of NSCLC patients. CONCLUSIONS: Circ_0007386, regulated by YAP1-EIF4A3 interaction under hypoxia conditions, plays an oncogenic role in NSCLC progression via the miR-383-5p/CIRBP axis.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Progressão da Doença , Fator de Iniciação 4A em Eucariotos , Neoplasias Pulmonares , RNA Circular , Proteínas de Sinalização YAP , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Animais , Proteínas de Sinalização YAP/metabolismo , Camundongos , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Feminino , Linhagem Celular Tumoral , Proliferação de Células , Precursores de RNA/metabolismo , Precursores de RNA/genética , Masculino , Splicing de RNA , Apoptose , MicroRNAs/genética , MicroRNAs/metabolismo , Camundongos Nus , Regulação Neoplásica da Expressão Gênica , RNA Helicases DEAD-boxRESUMO
Cell-laden bioprinting is a promising biofabrication strategy for regenerating bioactive transplants to address organ donor shortages. However, there has been little success in reproducing transplantable artificial organs with multiple distinctive cell types and physiologically relevant architecture. In this study, an omnidirectional printing embedded network (OPEN) is presented as a support medium for embedded 3D printing. The medium is state-of-the-art due to its one-step preparation, fast removal, and versatile ink compatibility. To test the feasibility of OPEN, exceptional primary mouse hepatocytes (PMHs) and endothelial cell line-C166, were used to print hepatospheroid-encapsulated-artificial livers (HEALs) with vein structures following predesigned anatomy-based printing paths in OPEN. PMHs self-organized into hepatocyte spheroids within the ink matrix, whereas the entire cross-linked structure remained intact for a minimum of ten days of cultivation. Cultivated HEALs maintained mature hepatic functions and marker gene expression at a higher level than conventional 2D and 3D conditions in vitro. HEALs with C166-laden vein structures promoted endogenous neovascularization in vivo compared with hepatospheroid-only liver prints within two weeks of transplantation. Collectively, the proposed platform enables the manufacture of bioactive tissues or organs resembling anatomical architecture, and has broad implications for liver function replacement in clinical applications.
Assuntos
Bioimpressão , Veias Hepáticas , Hepatócitos , Fígado , Neovascularização Fisiológica , Impressão Tridimensional , Esferoides Celulares , Animais , Bioimpressão/métodos , Hepatócitos/citologia , Camundongos , Esferoides Celulares/citologia , Fígado/citologia , Transplante de Fígado , Fígado Artificial , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Linhagem Celular , Camundongos Endogâmicos C57BL , MasculinoRESUMO
The physical and chemical characteristics of fly ash has changed significantly under ultra-low emission system and the current leaching system is no longer suitable for high alkalinity fly ash. This work investigated the pH values and evolution of physical and chemical characteristics of fly ash from 24 typical municipal solid waste incineration plants in China. The pH value of the leaching solution obtained by HJ/T 300-2007 presented two different acid and alkali characteristics, where high and low alkalinity fly ash accounted for 54.17% and 45.83%, respectively. The alkali content in fly ash increased significantly after ultra-low emission standard, increasing by 18.24% compared with before the implementation of GB 18485-2014. The leaching behavior of high alkalinity fly ash showed the illusion that they could enter the landfill only by the addition of a small amount of chelating agent or even without stabilization treatment, and its long-term landfill risk is significant. The phase change of high alkalinity fly ash and pH value change of the leaching solution after carbonation were the key factors for the leaching concentration change of heavy metals. Therefore, it is recommended to improve the existing leaching system or conduct accelerated carbonization experiments to scientifically evaluate the long-term leaching characteristics of high alkalinity fly ash, and to reduce the risk of heavy metal release from high alkalinity FA after entering the landfill site.
Assuntos
Cinza de Carvão , Incineração , Resíduos Sólidos , Cinza de Carvão/análise , Cinza de Carvão/química , Resíduos Sólidos/análise , China , Metais Pesados/análise , Concentração de Íons de Hidrogênio , Eliminação de ResíduosRESUMO
In vivo, muscle and neuronal cells are post-mitotic, and their function is predominantly regulated by proteostasis, a multilayer molecular process that maintains a delicate balance of protein homeostasis. The ubiquitin-proteasome system (UPS) is a key regulator of proteostasis. A dysfunctional UPS is a hallmark of muscle ageing and is often impacted in neuromuscular disorders (NMDs). Malfunction of the UPS often results in aberrant protein accumulation which can lead to protein aggregation and/or mis-localization affecting its function. Deubiquitinating enzymes (DUBs) are key players in the UPS, controlling protein turnover and maintaining the free ubiquitin pool. Several mutations in DUB encoding genes are linked to human NMDs, such as ATXN3, OTUD7A, UCHL1 and USP14, whilst other NMDs are associated with dysregulation of DUB expression. USP5, USP9X and USP14 are implicated in synaptic transmission and remodeling at the neuromuscular junction. Mice lacking USP19 show increased maintenance of lean muscle mass. In this review, we highlight the involvement of DUBs in muscle physiology and NMDs, particularly in processes affecting muscle regeneration, degeneration and inflammation following muscle injury. DUBs have recently garnered much respect as promising drug targets, and their roles in muscle maturation, regeneration and degeneration may provide the framework for novel therapeutics to treat muscular disorders including NMDs, sarcopenia and cachexia.
Assuntos
Enzimas Desubiquitinantes , Humanos , Animais , Enzimas Desubiquitinantes/metabolismo , Músculo Esquelético/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Doenças Neuromusculares/metabolismo , Doenças Neuromusculares/genética , Doenças Neuromusculares/fisiopatologia , Doenças Neuromusculares/enzimologia , Doenças Musculares/metabolismo , Doenças Musculares/genética , Camundongos , ProteostaseRESUMO
The gut microbiota plays a critical role in the progression of human diseases, especially cancer. In recent decades, there has been accumulating evidence of the connections between the gut microbiota and cancer immunotherapy. Therefore, understanding the functional role of the gut microbiota in regulating immune responses to cancer immunotherapy is crucial for developing precision medicine. In this review, we extract insights from state-of-the-art research to decipher the complicated crosstalk among the gut microbiota, the systemic immune system, and immunotherapy in the context of cancer. Additionally, as the gut microbiota can account for immune-related adverse events, we discuss potential interventions to minimize these adverse effects and discuss the clinical application of five microbiota-targeted strategies that precisely increase the efficacy of cancer immunotherapy. Finally, as the gut microbiota holds promising potential as a target for precision cancer immunotherapeutics, we summarize current challenges and provide a general outlook on future directions in this field.
Assuntos
Microbioma Gastrointestinal , Imunoterapia , Neoplasias , Humanos , Microbioma Gastrointestinal/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Imunoterapia/métodos , AnimaisRESUMO
Cavity optomagnonics has received considerable research interest in recent years, due to the coherent magnetic Brillioun light scattering in the ferromagnetic material. Here, we theoretically propose and numerically verify a feasible scheme for the full polarization tomography on photon statistics in an optomagnonic whispering-gallery-mode microresonator system in the weak-coupling regime. By performing the polarization pre- and post-selections to manipulate the polarization states of the input and output photons, we find that the rich sub- and super-Poissonian photon statistics can be selectively generated, thanks to quantum interferences. In the parameter space of phase delay, the evolution from photon bunching to antibunching indicates the change from phase to amplitude squeezing. Our obtained result has potential applications in tunable quantum polarized light sources based on the cavity optomagnonic platform in micro-nano scale. It also offers a deeper understanding for full quantum cavity optomagnonics.
RESUMO
The extensive and repeated application of chemical fungicides results in the rapid development of fungicide resistance. Novel antifungal pesticides are urgently required. Natural products have been considered precious sources of pesticides. It is necessary to discover antifungal pesticides by using natural products. Herein, 42 various griseofulvin derivatives were synthesized. Their antifungal activities were evaluated in vitro. Most of them showed good antifungal activity, especially 3d exhibited a very broad antifungal spectrum and the most significant activities against 7 phytopathogenic fungi. In vivo activity results suggested that 3d protected apples and tomatoes from serious infection by phytopathogenic fungi. These proved that 3d had the potential to be a natural product-derived antiphytopathogenic fungi agent. Furthermore, docking analysis suggested that tubulin might be one of the action sites of 3d. It is reasonable to believe that griseofulvin derivatives are worth further development for the discovery of new pesticides.
Assuntos
Fungos , Fungicidas Industriais , Griseofulvina , Doenças das Plantas , Griseofulvina/farmacologia , Griseofulvina/química , Griseofulvina/síntese química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Doenças das Plantas/microbiologia , Relação Estrutura-Atividade , Fungos/efeitos dos fármacos , Simulação de Acoplamento Molecular , Solanum lycopersicum/microbiologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/químicaRESUMO
Hypertensive cerebrovascular remodeling involves the enlargement of vascular smooth muscle cells (VSMCs), which activates volume-regulated Cl- channels (VRCCs). The leucine-rich repeat-containing family 8 A (LRRC8A) has been shown to be the molecular identity of VRCCs. However, its role in vascular remodeling during hypertension is unclear. In this study, we used vascular smooth muscle-specific LRRC8A knockout (CKO) mice and an angiotensin II (Ang II)-induced hypertension model. The results showed that cerebrovascular remodeling during hypertension was ameliorated in CKO mice, and extracellular matrix (ECM) deposition was reduced. Based on the RNA-sequencing analysis of aortic tissues, the level of matrix metalloproteinases (MMPs), such as MMP-9 and MMP-14, were reduced in CKO mice with hypertension, which was further verified in vivo by qPCR and immunofluorescence analysis. Knockdown of LRRC8A in VSMCs inhibited the Ang II-induced upregulation of collagen I, fibronectin, and matrix metalloproteinases (MMPs), and overexpression of LRRC8A had the opposite effect. Further experiments revealed an interaction between with-no-lysine (K)-1 (WNK1), which is a "Cl--sensitive kinase", and Forkhead transcription factor O3a (FOXO3a), which is a transcription factor that regulates MMP expression. Ang II induced the phosphorylation of WNK1 and downstream FOXO3a, which then increased the expression of MMP-2 and MMP-9. This process was inhibited or potentiated when LRRC8A was knocked down or overexpressed, respectively. Overall, these results demonstrate that LRRC8A knockout in vascular smooth muscle protects against cerebrovascular remodeling during hypertension by reducing ECM deposition and inhibiting the WNK1/FOXO3a/MMP signaling pathway, demonstrating that LRRC8A is a potential therapeutic target for vascular remodeling-associated diseases such as stroke.
Assuntos
Angiotensina II , Proteína Forkhead Box O3 , Hipertensão , Camundongos Knockout , Músculo Liso Vascular , Transdução de Sinais , Remodelação Vascular , Proteína Quinase 1 Deficiente de Lisina WNK , Animais , Músculo Liso Vascular/metabolismo , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Camundongos , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/genética , Masculino , Metaloproteinases da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Células CultivadasRESUMO
Activation of the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome complex is an essential innate immune signaling mechanism. To reveal how human NLRP3 inflammasome assembly and activation are controlled, in particular by components of the ubiquitin system, proximity labeling, affinity purification, and RNAi screening approaches were performed. Our study provides an intricate time-resolved molecular map of different phases of NLRP3 inflammasome activation. Also, we show that ubiquitin C-terminal hydrolase 1 (UCH-L1) interacts with the NACHT domain of NLRP3. Downregulation of UCH-L1 decreases pro-interleukin-1ß (IL-1ß) levels. UCH-L1 chemical inhibition with small molecules interfered with NLRP3 puncta formation and ASC oligomerization, leading to altered IL-1ß cleavage and secretion, particularly in microglia cells, which exhibited elevated UCH-L1 expression as compared to monocytes/macrophages. Altogether, we profiled NLRP3 inflammasome activation dynamics and highlight UCH-L1 as an important modulator of NLRP3-mediated IL-1ß production, suggesting that a pharmacological inhibitor of UCH-L1 may decrease inflammation-associated pathologies.
Assuntos
Inflamassomos , Interleucina-1beta , Macrófagos , Microglia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteômica , Ubiquitina Tiolesterase , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteômica/métodos , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genéticaRESUMO
Overconfidence, a widely observed cognitive bias, has been linked to increased gambling motivations and behaviors. However, previous studies have largely overlooked overconfidence under a social comparison context, known as overplacement, i.e., the tendency of individuals to believe that they are better than their similar peers. In the present study, we tested the effect of overplacement on gambling motivations and behaviors though a Pilot Survey of Chinese college students (N = 129) and a Field Survey of Chinese Macao casino gamblers (N = 733). Our results revealed a double-edged sword effect of overplacement: Serving as a risk factor, evaluating one self's earning ability as higher than others was linked to more gambling motivations (ß = 0.18, p = .005) and frequency (ß = 0.18, p = .004); Serving as a protective factor, evaluating oneself as happier than others was linked to less gambling motivations (ß = - 0.32, p < .001) and problem behaviors (ß = - 0.26, p < .001). These findings expand the relationship between overconfidence and gambling from a cognitive bias perspective to a social comparison perspective. Our study not only revealed a typical profile of gambling motivations and behaviors among different demographic groups in Chinese casino gamblers, but also highlighted the importance of considering social factors in the study of the psychological mechanisms of gambling.
Assuntos
Jogo de Azar , Motivação , Humanos , Masculino , Feminino , Jogo de Azar/psicologia , Adulto , Adulto Jovem , China , Estudantes/psicologia , Estudantes/estatística & dados numéricos , Comportamento Aditivo/psicologia , Macau , Autoimagem , Inquéritos e QuestionáriosRESUMO
Cordycepin (CRD) is an active component derived from Cordyceps militaris, which possesses multiple biological activities and uses in liver disease. However, whether CRD improves liver fibrosis by regulating hepatic stellate cell (HSC) activation has remained unknown. The study aims further to clarify the activities of CRD on liver fibrosis and elucidate the possible mechanism. Our results demonstrated that CRD significantly relieved hepatocyte injury and inhibited HSC activation, alleviating hepatic fibrogenesis in the Diethyl 1,4-dihydro-2,4,6-trimethyl-3,5-pyridinedicarboxylate (DDC)-induced mice model. In vitro, CRD exhibited dose-dependent repress effects on HSC proliferation, migration, and pro-fibrotic function in TGF-ß1-activated LX-2 and JS-1 cells. The functional enrichment analysis of RNA-seq data indicated that the pathway through which CRD alleviates HSC activation involves cellular senescence and cell cycle-related pathways. Furthermore, it was observed that CRD accumulated the number of senescence-associated a-galactosidase positive cells and the levels of senescencemarker p21, and provoked S phasearrestof activated HSC. Remarkably, CRD treatment abolished TGF-ß-induced yes-associated protein (YAP) nuclear translocation that acts upstream of glutaminolysis in activated HSC. On the whole, CRD significantly inhibited glutaminolysis of activated-HSC and induced cell senescence through the YAP signaling pathway, consequently alleviating liver fibrosis, which may be a valuable supplement for treating liver fibrosis.
Assuntos
Senescência Celular , Desoxiadenosinas , Células Estreladas do Fígado , Cirrose Hepática , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Animais , Senescência Celular/efeitos dos fármacos , Desoxiadenosinas/farmacologia , Desoxiadenosinas/uso terapêutico , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Camundongos , Masculino , Humanos , Camundongos Endogâmicos C57BL , Proliferação de Células/efeitos dos fármacos , Linhagem Celular , Proteínas de Sinalização YAP/metabolismo , Modelos Animais de Doenças , Fator de Crescimento Transformador beta1/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismoRESUMO
Cancer remains one of the leading causes of mortality worldwide, leading to increased interest in utilizing immunotherapy strategies for better cancer treatments. In the past decade, CD103+ T cells have been associated with better clinical prognosis in patients with cancer. However, the specific immune mechanisms contributing toward CD103-mediated protective immunity remain unclear. Here, we show an unexpected and transient CD61 expression, which is paired with CD103 at the synaptic microclusters of T cells. CD61 colocalization with the T cell antigen receptor further modulates downstream T cell antigen receptor signaling, improving antitumor cytotoxicity and promoting physiological control of tumor growth. Clinically, the presence of CD61+ tumor-infiltrating T lymphocytes is associated with improved clinical outcomes, mediated through enhanced effector functions and phenotype with limited evidence of cellular exhaustion. In conclusion, this study identified an unconventional and transient CD61 expression and pairing with CD103 on human immune cells, which potentiates a new target for immune-based cellular therapies.
Assuntos
Antígenos CD , Apirase , Cadeias alfa de Integrinas , Receptores de Antígenos de Linfócitos T , Transdução de Sinais , Animais , Humanos , Camundongos , Antígenos CD/metabolismo , Antígenos CD/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Cadeias alfa de Integrinas/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Linfócitos T Citotóxicos/imunologiaRESUMO
OBJECTIVE: Quanzhen Yiqi decoction (QZYQ) is a traditional Chinese medicine for treating chronic obstructive pulmonary disease. METHODS: Mice were exposed to cigarette smoke (CS) 6 days/week (40 cigarettes/day) for 24 weeks and then intragastrically administered QZYQ (4.72, 9.45, or 18.89 g/kg) or dexamethasone (DEX, 0.6 mg/kg) for 6 weeks. We examined the lung function and collected bronchoalveolar lavage fluid for inflammatory cell and cytokine quantification. The pathological lung changes, ROS and oxidative biomarkers were measured. We used immunohistochemistry and western blotting to evaluate the levels of Nrf2/HO-1, NLRP3/ASC/Caspase1/IL-1ß/IL-18. RESULTS: The CS group showed significant increases in the forced vital capacity, lung resistance, and chord compliance and a lower FEV50/FVC compared with the control, and QZYQ improved these changes. In addition, QZYQ effectively reduced emphysema, immune cell infiltration, and airway remodeling. QZYQ stimulated HO-1 expression and reduced oxidative stress through the Nrf2 pathway. QZYQ inhibited the production of NLRP3/ASC/Caspase-1 to inhibit IL-1ß and IL-18. CONCLUSION: Our study suggested that QZYQ can improve the function and histology of the lungs and reduce inflammatory cell recruitment. QZYQ inhibits ROS production and NLRP3 inflammasome activation by upregulating Nrf2 to reduce lung injury. The anti-inflammatory effects of QZYQ are similar to those of DEX.
RESUMO
Immune checkpoint inhibitors targeting the programmed cell death-1 (PD-1) protein significantly improve survival in patients with advanced non-small-cell lung cancer (NSCLC), but its impact on early-stage ground-glass opacity (GGO) lesions remains unclear. This is a single-arm, phase II trial (NCT04026841) using Simon's optimal two-stage design, of which 4 doses of sintilimab (200 mg per 3 weeks) were administrated in 36 enrolled multiple primary lung cancer (MPLC) patients with persistent high-risk (Lung-RADS category 4 or had progressed within 6 months) GGOs. The primary endpoint was objective response rate (ORR). T/B/NK-cell subpopulations, TCR-seq, cytokines, exosomal RNA, and multiplexed immunohistochemistry (mIHC) were monitored and compared between responders and non-responders. Finally, two intent-to-treat (ITT) lesions (pure-GGO or GGO-predominant) showed responses (ORR: 5.6%, 2/36), and no patients had progressive disease (PD). No grade 3-5 TRAEs occurred. The total response rate considering two ITT lesions and three non-intent-to-treat (NITT) lesions (pure-solid or solid-predominant) was 13.9% (5/36). The proportion of CD8+ T cells, the ratio of CD8+/CD4+, and the TCR clonality value were significantly higher in the peripheral blood of responders before treatment and decreased over time. Correspondingly, the mIHC analysis showed more CD8+ T cells infiltrated in responders. Besides, responders' cytokine concentrations of EGF and CTLA-4 increased during treatment. The exosomal expression of fatty acid metabolism and oxidative phosphorylation gene signatures were down-regulated among responders. Collectively, PD-1 inhibitor showed certain activity on high-risk pulmonary GGO lesions without safety concerns. Such effects were associated with specific T-cell re-distribution, EGF/CTLA-4 cytokine compensation, and regulation of metabolism pathways.