Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 291(Pt 3): 132978, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34808203

RESUMO

An amphiphilic cellulose aerogel (HCNC-TPB/TMC) was fabricated by grafting 1,3,5-Tris (4-aminophenyl)benzene (TPB) and trimesoyl chloride (TMC) onto the aldehyde nanocellulose through Schiff alkali and substitution reaction. The obtained HCNC-TPB/TMC exhibited good morphology with cellulose fiber and owned abundant hydrophilic amino and carboxyl groups and hydrophobic aromatic groups. The batch adsorption experiments demonstrated that HCNC-TPB/TMC showed excellent adsorption performance (Qmax = 526.32 mg g-1) for sodium diclofenac (DCF), wide pH applicability (4-10) and outstanding stability and reusability. The DCF adsorption obeyed the pseudo-second-order kinetic model and the Langmuir isotherm, and underwent a spontaneous exothermic process. The main adsorption mechanisms involved electrostatic interaction, hydrogen bonds, π-π stacking interaction and hydrophobic effect. Importantly, the introduced carboxyl aromatic groups on TMC could effectively strengthen the hydrogen bonds and the π-π stacking between HCNC-TPB/TMC and DCF.


Assuntos
Poluentes Ambientais , Preparações Farmacêuticas , Poluentes Químicos da Água , Adsorção , Celulose , Cinética
2.
Bioresour Technol ; 329: 124856, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33652191

RESUMO

In this study, the sulfonic group was introduced to prepare high-performance Eucommia ulmoides lignin-based biochar, which was used to remove tetracycline hydrochloride. The BET area (2008 m2 g-1) of sulfonated biochar was twice that of unmodified biochar. Through XRD and Raman analysis, the synergetic pyrolysis mechanism of the sulfonic group in the formation of the porous structure was discussed. Sulfonated biochar had excellent adsorption performance for tetracycline hydrochloride (Qm: 1163 mg g-1), while the adsorption performance of unmodified biochar was about only one-fourth (Qm: 277.7 mg g-1) of that. The adsorption of tetracycline hydrochloride by the sulfonated biochar was spontaneously endothermic and conformed to the Langmuir isotherm model. The adsorption process was confirmed by pseudo-second-order kinetic model. Moreover, the sulfonic group on the sulfonated biochar significantly promoted the formation of the hydrogen bond and greatly improved the adsorption performance.


Assuntos
Eucommiaceae , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Cinética , Lignina , Pirólise , Tetraciclina/análise , Poluentes Químicos da Água/análise
3.
Environ Res ; 194: 110652, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33417907

RESUMO

In this work, a novel cellulose aerogel (CNC-PVAm/rGO) was fabricated using cellulose nanocrystalline (CNC) modified with polyvinylamine (PVAm) and reduced graphene oxide (rGO). The resultant CNC-PVAm/rGO was then applied for the adsorption of diclofenac sodium (DCF), a typical non-steroidal anti-inflammatory drug. Characterization using ultra-high-resolution field emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and the Brunauer-Emmett-Teller surface area revealed that the obtained CNC-PVAm/rGO displayed an evident 3D porous structure, which had an ultralight weight, good recovery, abundant surface functional groups (e.g., -NH2 and -OH), and rGO nanosheets. In addition, the material presented a stable crystal structure and large specific surface area (105.73 m2 g-1). During the adsorption of DCF, the CNC-PVAm/rGO aerogel showed a rather excellent adsorption performance, with a maximum adsorption capacity (qmax) of 605.87 mg g-1, which was approximately 53 times larger than that of the bare CNC aerogel (11.45 mg g-1). The adsorption performance of CNC-PVAm/rGO was also better than that of other reported adsorbents. The adsorption of DCF to CNC-PVAm/rGO obeyed the Langmuir isotherm and pseudo-second-order kinetic models, and underwent a spontaneous exothermic process. Moreover, DCF was easily desorbed from CNC-PVAm/rGO with sodium hydroxide solution (0.1 mol L-1), and the absorbent could be reused four times. The introduction of PVAm and rGO to the CNC-PVAm/rGO aerogel also greatly enhanced electrostatic interactions, π-π interactions, and hydrophobic effects. These enhancements significantly promoted the hydrogen bonding interactions between the DCF molecules and CNC-PVAm/rGO, thus resulting in a large improvement in the adsorption performance of the aerogel.


Assuntos
Celulose , Diclofenaco , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA