Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Learn Mem ; 25(6): 264-272, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29764972

RESUMO

N-methyl-d-aspartate receptors (NMDARs) at excitatory synapses are central to activity-dependent synaptic plasticity and learning and memory. NMDARs act as ionotropic and metabotropic receptors by elevating postsynaptic calcium concentrations and by direct intracellular protein signaling. In the forebrain, these properties are controlled largely by the auxiliary GluN2 subunits, GluN2A and GluN2B. While calcium conductance through NMDAR channels and intracellular protein signaling make separate contributions to synaptic plasticity, it is not known if these properties individually influence learning and memory. To address this issue, we created chimeric GluN2 subunits containing the amino-terminal domain and transmembrane domains from GluN2A or GluN2B fused to the carboxy-terminal domain of GluN2B (termed ABc) or GluN2A ATD (termed BAc), respectively, and expressed these mutated GluN2 subunits in transgenic mice. Expression was confirmed at the mRNA level and protein subunit translation and translocation into dendrites were observed in forebrain neurons. In the spatial version of the Morris water maze, BAc mice displayed signs of a learning deficit. In contrast, ABc animals performed similarly to wild-types during training, but showed a more direct approach to the goal location during a long-term memory test. There was no effect of ABc or BAc expression in a nonspatial water escape task. Since background expression is predominantly GluN2A in mature animals, the results suggest that spatial learning is more sensitive to manipulations of the amino-terminal domain and transmembrane domains (calcium conductance) and long-term memory is regulated more by the carboxy-terminal domain (intracellular protein signaling).


Assuntos
Aprendizagem em Labirinto/fisiologia , Memória de Longo Prazo/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sequência de Aminoácidos , Animais , Deficiências da Aprendizagem/metabolismo , Transtornos da Memória/metabolismo , Camundongos Transgênicos , Neurônios/metabolismo , Prosencéfalo/metabolismo , Domínios Proteicos , RNA Mensageiro/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Comportamento Espacial/fisiologia
2.
Nat Struct Mol Biol ; 21(6): 544-51, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24837192

RESUMO

The spliceosome is a dynamic assembly of five small nuclear ribonucleoproteins (snRNPs) that removes introns from eukaryotic pre-mRNA. U6, the most conserved of the spliceosomal small nuclear RNAs (snRNAs), participates directly in catalysis. Here, we report the crystal structure of the Saccharomyces cerevisiae U6 snRNP core containing most of the U6 snRNA and all four RRM domains of the Prp24 protein. It reveals a unique interlocked RNP architecture that sequesters the 5' splice site-binding bases of U6 snRNA. RRMs 1, 2 and 4 of Prp24 form an electropositive groove that binds double-stranded RNA and may nucleate annealing of U4 and U6 snRNAs. Substitutions in Prp24 that suppress a mutation in U6 localize to direct RNA-protein contacts. Our results provide the most comprehensive view to date of a multi-RRM protein bound to RNA and reveal striking coevolution of protein and RNA structure.


Assuntos
RNA Nuclear Pequeno/química , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteínas Nucleares Pequenas/química , Proteínas de Saccharomyces cerevisiae/química , Sítios de Ligação , Cristalografia por Raios X , Evolução Molecular , Modelos Moleculares , Estrutura Terciária de Proteína , Saccharomyces cerevisiae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA