Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 18(14): 10008-10018, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38551183

RESUMO

Two-dimensional (2D) heterojunction nanomaterials offer exceptional physicochemical and catalytic properties, thanks to their special spatial electronic structure. However, synthesizing morphologically uniform 2D platinum (Pt)-based metallic nanomaterials with diverse crystalline phases remains a formidable challenge. In this study, we have achieved the successful synthesis of advanced 2D platinum-tellurium heterojunction nanosheet assemblies (Ptx-PtTe2 HJNSAs, x = 0, 1, 2), seamlessly integrating both trigonal PtTe2 (t-PtTe2) and cubic Pt (c-Pt) phases. By enabling efficient electron transport and leveraging the specific electron density present at the heterojunction, the Pt2-PtTe2 HJNSAs/C demonstrated exceptional formic acid oxidation reaction (FAOR) activity and stability. Specifically, the specific and mass activities reached 8.4 mA cm-2 and 6.1 A mgPt-1, which are 46.7 and 50.8 times higher than those of commercial Pt/C, respectively. Impressively, aberration-corrected high-angle annular dark field scanning transmission electron microscopy (AC-HAADF-STEM) revealed a closely packed arrangement of atomic layers and a coherent intergrowth heterogeneous structure. Density functional theory (DFT) calculations further indicated that rearrangement of electronic structure occurred on the surface of Pt2-PtTe2 HJNSAs resulting in a more favorable dehydrogenation pathway and excellent CO tolerance, beneficial for performance improvement. This work inspires the targeted exploration of Pt-based nanomaterials through 2D heterostructure design, leading to an important impact on fuel cell catalysis and beyond.

2.
J Am Chem Soc ; 146(7): 4557-4569, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38345667

RESUMO

Intelligent utilization of the anionic redox reaction (ARR) in Li-rich cathodes is an advanced strategy for the practical implementation of next-generation high-energy-density rechargeable batteries. However, due to the intrinsic complexity of ARR (e.g., nucleophilic attacks), the instability of the cathode-electrolyte interphase (CEI) on a Li-rich cathode presents more challenges than typical high-voltage cathodes. Here, we manipulate CEI interfacial engineering by introducing an all-fluorinated electrolyte and exploiting its interaction with the nucleophilic attack to construct a gradient CEI containing a pair of fluorinated layers on a Li-rich cathode, delivering enhanced interfacial stability. Negative/detrimental nucleophilic electrolyte decomposition has been efficiently evolved to further reinforce CEI fabrication, resulting in the construction of LiF-based indurated outer shield and fluorinated polymer-based flexible inner sheaths. Gradient interphase engineering dramatically improved the capacity retention of the Li-rich cathode from 43 to 71% after 800 cycles and achieved superior cycling stability in anode-free and pouch-type full cells (98.8% capacity retention, 220 cycles), respectively.

3.
Adv Mater ; 36(1): e2308656, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37955857

RESUMO

Raising the charging cut-off voltage of layered oxide cathodes can improve their energy density. However, it inevitably introduces instabilities regarding both bulk structure and surface/interface. Herein, exploiting the unique characteristics of high-valence Nb5+ element, a synchronous surface-to-bulk-modified LiCoO2 featuring Li3 NbO4 surface coating layer, Nb-doped bulk, and the desired concentration gradient architecture through one-step calcination is achieved. Such a multifunctional structure facilitates the construction of high-quality cathode/electrolyte interface, enhances Li+ diffusion, and restrains lattice-O loss, Co migration, and associated layer-to-spinel phase distortion. Therefore, a stable operation of Nb-modified LiCoO2 half-cell is achieved at 4.6 V (90.9% capacity retention after 200 cycles). Long-life 250 Wh kg-1 and 4.7 V-class 550 Wh kg-1 pouch cells assembled with graphite and thin Li anodes are harvested (both beyond 87% after 1600 and 200 cycles). This multifunctional one-step modification strategy establishes a technological paradigm to pave the way for high-energy density and long-life lithium-ion cathode materials.

4.
Angew Chem Int Ed Engl ; 63(6): e202316790, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38116869

RESUMO

Electrolyte engineering is a fascinating choice to improve the performance of Li-rich layered oxide cathodes (LRLO) for high-energy lithium-ion batteries. However, many existing electrolyte designs and adjustment principles tend to overlook the unique challenges posed by LRLO, particularly the nucleophilic attack. Here, we introduce an electrolyte modification by locally replacing carbonate solvents in traditional electrolytes with a fluoro-ether. By benefit of the decomposition of fluoro-ether under nucleophilic O-related attacks, which delivers an excellent passivation layer with LiF and polymers, possessing rigidity and flexibility on the LRLO surface. More importantly, the fluoro-ether acts as "sutures", ensuring the integrity and stability of both interfacial and bulk structures, which contributed to suppressing severe polarization and enhancing the cycling capacity retention from 39 % to 78 % after 300 cycles for the 4.8 V-class LRLO. This key electrolyte strategy with comprehensive analysis, provides new insights into addressing nucleophilic challenge for high-energy anionic redox related cathode systems.

5.
Nature ; 621(7977): 75-81, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37673990

RESUMO

Benefiting from high energy density (2,600 Wh kg-1) and low cost, lithium-sulfur (Li-S) batteries are considered promising candidates for advanced energy-storage systems1-4. Despite tremendous efforts in suppressing the long-standing shuttle effect of lithium polysulfides5-7, understanding of the interfacial reactions of lithium polysulfides at the nanoscale remains elusive. This is mainly because of the limitations of in situ characterization tools in tracing the liquid-solid conversion of unstable lithium polysulfides at high temporal-spatial resolution8-10. There is an urgent need to understand the coupled phenomena inside Li-S batteries, specifically, the dynamic distribution, aggregation, deposition and dissolution of lithium polysulfides. Here, by using in situ liquid-cell electrochemical transmission electron microscopy, we directly visualized the transformation of lithium polysulfides over electrode surfaces at the atomic scale. Notably, an unexpected gathering-induced collective charge transfer of lithium polysulfides was captured on the nanocluster active-centre-immobilized surface. It further induced an instantaneous deposition of nonequilibrium Li2S nanocrystals from the dense liquid phase of lithium polysulfides. Without mediation of active centres, the reactions followed a classical single-molecule pathway, lithium polysulfides transforming into Li2S2 and Li2S step by step. Molecular dynamics simulations indicated that the long-range electrostatic interaction between active centres and lithium polysulfides promoted the formation of a dense phase consisting of Li+ and Sn2- (2 < n ≤ 6), and the collective charge transfer in the dense phase was further verified by ab initio molecular dynamics simulations. The collective interfacial reaction pathway unveils a new transformation mechanism and deepens the fundamental understanding of Li-S batteries.

6.
Sci Adv ; 9(30): eadf8436, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37506205

RESUMO

When an ionic crystal dissolves in solvent, the positive and negative ions associated with solvent molecules release from the crystal. However, the existing form, interaction, and dynamics of ions in real solution are poorly understood because of the substantial experimental challenge. We observed the diffusion and aggregation of polyoxometalate (POM) ions in water by using liquid phase transmission electron microscopy. Real-time observation reveals an unexpected local reciprocating hopping motion of the ions in water, which may be caused by the short-range polymerized bridge of water molecules. We find that ion oligomers, existing as highly active clusters, undergo frequent splitting, aggregation, and rearrangement in dilute solution. The formation and dissociation of ion oligomers indicate a weak counterion-mediated interaction. Furthermore, POM ions with tetrahedral geometry show directional interaction compared with spherical ions, which presents structure-dependent dynamics.

7.
Lab Chip ; 23(17): 3768-3777, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37489871

RESUMO

The catalysis reaction mechanism at nano/atomic scale attracted intense attention in the past decades. However, most in situ characterization technologies can only reflect the average information of catalysts, which leads to the inability to characterize the dynamic changes of single nanostructures or active sites under operando conditions, and many micro-nanoscale reaction mechanisms are still unknown. The combination of in situ transmission electron microscopy (TEM) holder system with MEMS chips provides a solution for it, where the design and fabrication of MEMS chips are the key factors. Here, with the aid of finite element simulation, an ultra-stable heating chip was developed, which has an ultra-low thermal drift during temperature heating. Under ambient conditions within TEM, atomic resolution imaging was achieved during the heating process or at high temperature up to 1300 °C. Combined with the developed polymer membrane seal technique and nanofluidic control system, it can realize an adjustable pressure from 0.1 bar to 4 bar gas environment around the sample. By using the developed ultra-low drift gas reaction cells, the nanoparticle's structure evolution at atomic scale was identified during reaction.

8.
Angew Chem Int Ed Engl ; 62(27): e202303343, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37138389

RESUMO

In sodium-ion batteries (SIBs), the low initial coulombic efficiency (ICE) is commonly induced by irreversible phase conversion and difficult desodiation, especially on transition metal compounds (TMCs). Yet the underlying physicochemical mechanism of poor reaction reversibility is still a controversial issue. Herein, by using in situ transmission electron microscopy and in situ X-ray diffraction, we demonstrate the irreversible conversion of NiCoP@C is caused by the rapid migration of P in carbon layer and preferential formation of isolated Na3 P during discharge. By modifying the carbon coating layer, the migration of Ni/Co/P atoms is inhibited, thus the improvement of ICE and cycle stability is realized. The inhibiting of fast atom migration which induces component separation and rapid performance degradation might be applied to a wide range of electrode materials, and guides the development of advanced SIBs.

9.
Commun Chem ; 6(1): 86, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130956

RESUMO

The structure and functionality of biomacromolecules are often regulated by chemical bonds, however, the regulation process and underlying mechanisms have not been well understood. Here, by using in situ liquid-phase transmission electron microscopy (LP-TEM), we explored the function of disulfide bonds during the self-assembly and structural evolution of sulfhydryl single-stranded DNA (SH-ssDNA). Sulfhydryl groups could induce self-assembly of SH-ssDNA into circular DNA containing disulfide bonds (SS-cirDNA). In addition, the disulfide bond interaction triggered the aggregation of two SS-cirDNA macromolecules along with significant structural changes. This visualization strategy provided structure information at nanometer resolution in real time and space, which could benefit future biomacromolecules research.

10.
J Am Chem Soc ; 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029335

RESUMO

Element doping/substitution has been recognized as an effective strategy to enhance the structural stability of layered cathodes. However, abundant substitution studies not only lack a clear identification of the substitution sites in the material lattice, but the rigid interpretation of the transition metal (TM)-O covalent theory is also not sufficiently convincing, resulting in the doping/substitution proposals being dragged into design blindness. In this work, taking Li1.2Ni0.2Mn0.6O2 as a prototype, the intense correlation between the "disordered degree" (Li/Ni mixing) and interface-structure stability (e.g., TM-O environment, slab/lattice, and Li+ reversibility) is revealed. Specifically, the degree of disorder induced by the Mg/Ti substitution extends in the opposite direction, conducive to sharp differences in the stability of TM-O, Li+ diffusion, and anion redox reversibility, delivering fairly distinct electrochemical performance. Based on the established paradigm of systematic characterization/analysis, the "degree of disorder" has been shown to be a powerful indicator of material modification by element substitution/doping.

11.
Molecules ; 28(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36985407

RESUMO

Cerium element with a unique electric structure can be used to modify semiconductor photocatalysts to enhance their photocatalytic performances. In this work, Ce-doped TiO2 (Ce/TiO2) was successfully achieved using the sol-gel method. The structural characterization methods confirm that Ce was doped in the lattice of anatase TiO2, which led to a smaller grain size. The performance test results show that the Ce doped in anatase TiO2 significantly enhances the charge transport efficiency and broadens the light absorption range, resulting in higher photocatalytic performance. The Ce/TiO2 exhibited a photocurrent density of 10.9 µA/cm2 at 1.0 V vs. Ag/AgCl, 2.5 times higher than that of pure TiO2 (4.3 µA/cm2) under AM 1.5 G light. The hydrogen (H2) production rate of the Ce/TiO2 was approximately 0.33 µmol/h/g, which is more than twice as much as that of the pure anatase TiO2 (0.12 µmol/h/g). This work demonstrates the effect of Ce doping in the lattice of TiO2 for enhanced photocatalytic hydrogen production.

12.
Chem Sci ; 14(8): 2183-2191, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36845937

RESUMO

Anode-free lithium metal batteries (AF-LMBs) can deliver the maximum energy density. However, achieving AF-LMBs with a long lifespan remains challenging because of the poor reversibility of Li+ plating/stripping on the anode. Here, coupled with a fluorine-containing electrolyte, we introduce a cathode pre-lithiation strategy to extend the lifespan of AF-LMBs. The AF-LMB is constructed with Li-rich Li2Ni0.5Mn1.5O4 cathodes as a Li-ion extender; the Li2Ni0.5Mn1.5O4 can deliver a large amount of Li+ in the initial charging process to offset the continuous Li+ consumption, which benefits the cycling performance without sacrificing energy density. Moreover, the cathode pre-lithiation design has been practically and precisely regulated using engineering methods (Li-metal contact and pre-lithiation Li-biphenyl immersion). Benefiting from the highly reversible Li metal on the Cu anode and Li2Ni0.5Mn1.5O4 cathode, the further fabricated anode-free pouch cells achieve 350 W h kg-1 energy density and 97% capacity retention after 50 cycles.

13.
Nat Protoc ; 18(2): 555-578, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36333447

RESUMO

Fundamentally understanding the complex electrochemical reactions that are associated with energy devices (e.g., rechargeable batteries, fuel cells and electrolyzers) has attracted worldwide attention. In situ liquid cell transmission electron microscopy (TEM) offers opportunities to directly observe and analyze in-liquid specimens without the need for freezing or drying, which opens up a door for visualizing these complex electrochemical reactions at the nano scale in real time. The key to the success of this technique lies in the design and fabrication of electrochemical liquid cells with thin but strong imaging windows. This protocol describes the detailed procedures of our established technique for the fabrication of such electrochemical liquid cells (~110 h). In addition, the protocol for the in situ TEM observation of electrochemical reactions by using the nanofabricated electrochemical liquid cell is also presented (2 h). We also show and analyze experimental results relating to the electrochemical reactions captured. We believe that this protocol will shed light on strategies for fabricating high-quality TEM liquid cells for probing dynamic electrochemical reactions in high resolution, providing a powerful research tool. This protocol requires access to a clean room equipped with specialized nanofabrication setups as well as TEM characterization equipment.

14.
J Chem Phys ; 157(23): 230901, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36550040

RESUMO

Li metal batteries (LMBs) reveal great application prospect in next-generation energy storage, because of their high energy density and low electrochemical potential, especially when paired with elemental sulfur and oxygen cathodes. Complex interfacial reactions have long been a big concern because of the elusive formation/dissolution of Li metal at the solid-electrolyte interface (SEI) layer, which leads to battery degradation under practical operating conditions. To precisely track the reactions at the electrode/electrolyte interfaces, in the past ten years, high spatio-temporal resolution, in situ electrochemical transmission electron microscopy (EC-TEM) has been developed. A preliminary understanding of the structural and chemical variation of Li metal during nucleation/growth and SEI layer formation has been obtained. In this perspective, we give a brief introduction of liquid cell development. Then, we comparably discuss the different configurations of EC-TEM based on open-cell and liquid-cell, and focus on the recent advances of liquid-cell EC-TEM and its investigation in the electrodes, electrolytes, and SEI. Finally, we present a perspective of liquid-cell EC-TEM for future LMB research.

15.
Nat Commun ; 13(1): 5197, 2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36057721

RESUMO

Metal-organic layers (MOLs) are highly attractive for application in catalysis, separation, sensing and biomedicine, owing to their tunable framework structure. However, it is challenging to obtain comprehensive information about the formation and local structures of MOLs using standard electron microscopy methods due to serious damage under electron beam irradiation. Here, we investigate the growth processes and local structures of MOLs utilizing a combination of liquid-phase transmission electron microscopy, cryogenic electron microscopy and electron ptychography. Our results show a multistep formation process, where precursor clusters first form in solution, then they are complexed with ligands to form non-crystalline solids, followed by the arrangement of the cluster-ligand complex into crystalline sheets, with additional possible growth by the addition of clusters to surface edges. Moreover, high-resolution imaging allows us to identify missing clusters, dislocations, loop and flat surface terminations and ligand connectors in the MOLs. Our observations provide insights into controllable MOL crystal morphology, defect engineering, and surface modification, thus assisting novel MOL design and synthesis.

16.
Proc Natl Acad Sci U S A ; 119(37): e2121848119, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067324

RESUMO

Refractory carbides are attractive candidates for support materials in heterogeneous catalysis because of their high thermal, chemical, and mechanical stability. However, the industrial applications of refractory carbides, especially silicon carbide (SiC), are greatly hampered by their low surface area and harsh synthetic conditions, typically have a very limited surface area (<200 m2 g-1), and are prepared in a high-temperature environment (>1,400 °C) that lasts for several or even tens of hours. Based on Le Chatelier's principle, we theoretically proposed and experimentally verified that a low-pressure carbothermal reduction (CR) strategy was capable of synthesizing high-surface area SiC (569.9 m2 g-1) at a lower temperature and a faster rate (∼1,300 °C, 50 Pa, 30 s). Such high-surface area SiC possesses excellent thermal stability and antioxidant capacity since it maintained stability under a water-saturated airflow at 650 °C for 100 h. Furthermore, we demonstrated the feasibility of our strategy for scale-up production of high-surface area SiC (460.6 m2 g-1), with a yield larger than 12 g in one experiment, by virtue of an industrial viable vacuum sintering furnace. Importantly, our strategy is  also applicable to the rapid synthesis of refractory metal carbides (NbC, Mo2C, TaC, WC) and even their emerging high-entropy carbides (VNbMoTaWC5, TiVNbTaWC5). Therefore, our low-pressure CR method provides an alternative strategy, not merely limited to temperature and time items, to regulate the synthesis and facilitate the upcoming industrial applications of carbide-based advanced functional materials.

17.
ACS Appl Mater Interfaces ; 14(33): 37689-37698, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35960014

RESUMO

Sodium ion batteries (SIBs), as an alternative and promising energy storage system, have attracted considerable attention due to the abundant reserves and low cost of sodium. However, it remains a great challenge to achieve high capacity and rate capability required for practical applications. Herein, hollow octahedral Co3Se4 particles encapsulated in reduced graphene oxide (Co3Se4@rGO) were designed and synthesized and exhibited excellent electrochemical performances as anodes of SIBs, especially rate capability. Sodiation/desodiation processes and involved mechanisms were investigated by using in situ TEM and in situ XRD. During sodiation, a crystalline Na2Se layer with numerous amorphous fine Co nanoparticles dispersed on it was observed to appear on the surface of the original Co3Se4@rGO particles, and the movable Co-Na2Se composites further migrated to the rGO network with high electron/ion dual conductivity, resulting in ultrafast sodium storage kinetics and remarkable rate performance of the Co3Se4@rGO anode evidenced by delivering a discharge capacity of 229.3 mAh g-1 at a large current density of 50 A g-1. Our findings reveal the fundamental mechanism behind the enhanced performance of the Co3Se4@rGO anode and offer valuable insights into the rational design of electrode materials for high-performance SIBs.

18.
Nano Lett ; 22(17): 6958-6963, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36037446

RESUMO

The kinetics of mass transfer in a stagnant fluid layer next to an interface govern numerous dynamic reactions in diffusional micro/nanopores, such as catalysis, fuel cells, and chemical separation. However, the effect of the interplay between stagnant liquid and flowing fluid on the micro/nanoscopic mass transfer dynamics remains poorly understood. Here, by using liquid cell transmission electron microscopy (TEM), we directly tracked microfluid unit migration at the nanoscale. By tracking the trajectories, an unexpected mass transfer phenomenon in which fluid units in the stagnant liquid layer migrated two orders faster during gas-liquid interface updating was identified. Molecular dynamics (MD) simulations indicated that the chemical potential difference between nanoscale liquid layers led to convective flow, which greatly enhanced mass transfer on the surface. Our study opens up a pathway toward research on mass transfer in the surface liquid layers at high spatial and temporal resolutions.


Assuntos
Nanoporos , Difusão , Cinética , Microfluídica , Microscopia Eletrônica de Transmissão
19.
Nat Commun ; 13(1): 3601, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739085

RESUMO

An understanding of solid-liquid interfaces is of great importance for fundamental research as well as industrial applications. However, it has been very challenging to directly image solid-liquid interfaces with high resolution, thus their structure and properties are often unknown. Here, we report a quasi-liquid phase between metal (In, Sn) nanoparticle surfaces and an aqueous solution observed using liquid cell transmission electron microscopy. Our real-time high-resolution imaging reveals a thin layer of liquid-like materials at the interfaces with the frequent appearance of small In nanoclusters. Such a quasi-liquid phase serves as an intermediate for the mass transport from the metal nanoparticle to the liquid. Density functional theory-molecular dynamics simulations demonstrate that the positive charges of In ions greatly contribute to the stabilization of the quasi-liquid phase on the metal surface.

20.
Small Methods ; 5(7): e2001234, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34928001

RESUMO

Liquid phase electron microscopy (TEM) is used to track the formation of In2 O3 ultrathin nanosheet in solution at atomic scale. This observation reveals that the formation of few atomic layer nanosheet goes through a complicated phase transition process from InCl3 . 3H2 O to In(OH)3 and then to In2 O3 . Interestingly, the intermediate InCl3 . 3H2 O nanosheet can grow via either layer by layer or the strain-driven enation growth from precursor solution. Moreover, in situ TEM results and density functional theory (DFT) calculations demonstrate that the oleylamine is responsible for the self-peeling process. These findings can provide atomic-level insight for the understanding of how 2D nanomaterial grows and transforms in solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA