Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Talanta ; 278: 126466, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38944940

RESUMO

The COVID-19 pandemic presents global challenges, notably with co-infections in respiratory tract involving SARS-CoV-2 variants and influenza strains. Detecting multiple viruses simultaneously is crucial for accurate diagnosis, effective tracking infectious sources, and containment of the epidemic. This study uses a label-free surface-enhanced Raman spectroscopy (SERS) method using Au NPs/pZrO2 (250) and FIB-made Au NRs (100) to detect dual viruses, including SARS-CoV-2 Delta variant (D) and influenza A (A) or B (B) virus. Results demonstrate distinct peaks facilitating virus differentiation, especially between D and A or B, with clear disparities between substrates; specific peaks at 950 and 1337 cm-1 are pivotal for discerning viruses using Au NPs/pZrO2 (250), while those at 1050, 1394, and 1450 cm-1 and 1033, 1165, 1337, and 1378 cm-1 are key for validation using Au NRs (100). Differences in substrate surface morphology and spatial disposition of accommodating viruses significantly influence hotspot formation and Raman signal amplification efficiency, thereby affecting the ability to distinguish various viruses. Furthermore, both substrates offer insights, even in the presence of oxymetazoline hydrochloride (an interfering substance), with practical implications in viral diagnosis. The customized design and reproducibility underscore efficient Raman signal amplification, even in challenging environments, highlighting potential for widespread virus detection.

2.
Analyst ; 149(10): 2784-2795, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38647233

RESUMO

Patients with end-stage kidney disease (ESKD) rely on dialysis to remove toxins and stay alive. However, hemodialysis alone is insufficient to completely remove all/major uremic toxins, resulting in the accumulation of specific toxins over time. The complexity of uremic toxins and their varying clearance rates across different dialysis modalities poses significant challenges, and innovative approaches such as microfluidics, biomarker discovery, and point-of-care testing are being investigated. This review explores recent advances in the qualitative and quantitative analysis of uremic toxins and highlights the use of innovative methods, particularly label-mediated and label-free surface-enhanced Raman spectroscopy, primarily for qualitative detection. The ability to analyze uremic toxins can optimize hemodialysis settings for more efficient toxin removal. Integration of multiple omics disciplines will also help identify biomarkers and understand the pathogenesis of ESKD, provide deeper understanding of uremic toxin profiling, and offer insights for improving hemodialysis programs. This review also highlights the importance of early detection and improved understanding of chronic kidney disease to improve patient outcomes.


Assuntos
Falência Renal Crônica , Insuficiência Renal Crônica , Toxinas Urêmicas , Humanos , Falência Renal Crônica/terapia , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/diagnóstico , Toxinas Urêmicas/análise , Progressão da Doença , Análise Espectral Raman/métodos , Biomarcadores/análise , Biomarcadores/sangue , Diálise Renal
3.
Anal Chim Acta ; 1256: 341151, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37037632

RESUMO

A method using label-free surface enhanced Raman spectroscopy (SERS) based on substrate design is provided for an early detection and differentiation of spike glycoprotein mutation sites in live SARS-CoV-2 variants. Two SERS-active substrates, Au nanocavities (Au NCs) and Au NPs on porous ZrO2 (Au NPs/pZrO2), were used to identify specific peaks of A.3, Alpha, and Delta variants at different concentrations and demonstrated the ability to provide their SERS spectra with detection limits of 0.1-1.0% (or 104-5 copies/mL). Variant identification can be achieved by cross-examining reference spectra and analyzing the substrate-analyte relationship between the suitability of the analyte upon the hotspot(s) formed at high concentrations and the effective detection distance at low concentrations. Mutation sites on the S1 chain of the spike glycoprotein for each variant may be related and distinguishable. This method does not require sample preprocessing and therefore allows for fast screening, which is of high value for more comprehensive and specific studies to distinguish upcoming variants.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , SARS-CoV-2/genética , Ouro/química , Nanopartículas Metálicas/química , COVID-19/diagnóstico , Análise Espectral Raman/métodos , Glicoproteínas
4.
Anal Chim Acta ; 1281: 341910, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38783745

RESUMO

BACKGROUND: Melanoma is a highly aggressive tumor and a significant cause of skin cancer-related death. Timely diagnosis and treatment require identification of specific biomarkers in exosomes secreted by melanoma cells. In this study, label-free surface-enhanced Raman spectroscopy (SERS) method with size-matched selectivity was used to detect membrane proteins in exosomes released from a stimulated environment of fibroblasts (L929) co-cultured with melanoma cells (B16-F10). To promote normal secretion of exosomes, micro-plasma treatment was used to gently induce the co-cultured cells and slightly increase the stress level around the cells for subsequent detection using the SERS method. RESULTS AND DISCUSSION: Firstly, changes in reactive oxygen species/reactive nitrogen species (ROS/RNS) concentrations in the cellular microenvironment and the viability and proliferation of healthy cells are assessed. Results showed that micro-plasma treatment increased extracellular ROS/RNS levels while modestly reducing cell proliferation without significantly affecting cell survival. Secondly, the particle size of secreted exosomes isolated from the culture medium of L929, B16-F10, and co-cultured cells with different micro-plasma treatment time did not increase significantly under single-cell conditions at short treatment time but might be changed under co-culture condition or longer treatment time. Third, for SERS signals related to membrane protein biomarkers, exosome markers CD9, CD63, and CD81 can be assigned to significant Raman shifts in the range of 943-1030 and 1304-1561 cm-1, while the characteristics SERS peaks of L929 and B16-F10 cells are most likely located at 1394/1404, 1271 and 1592 cm-1 respectively. SIGNIFICANCE AND NOVELTY: Therefore, this micro-plasma-induced co-culture model provides a promising preclinical approach to understand the diagnostic potential of exosomes secreted by cutaneous melanoma/fibroblasts. Furthermore, the label-free SERS method with size-matched selectivity provides a novel approach to screen biomarkers in exosomes secreted by melanoma cells, aiming to reduce the use of labeling reagents and the processing time traditionally required.


Assuntos
Técnicas de Cocultura , Exossomos , Fibroblastos , Análise Espectral Raman , Exossomos/metabolismo , Exossomos/química , Fibroblastos/metabolismo , Fibroblastos/citologia , Camundongos , Animais , Análise Espectral Raman/métodos , Gases em Plasma/química , Gases em Plasma/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células , Melanoma/metabolismo , Melanoma/patologia , Sobrevivência Celular
5.
Anal Chim Acta ; 1193: 339406, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35058004

RESUMO

The COVID-19 pandemic negatively affected the economy and health security on a global scale, causing a drastic change on lifestyle, calling a need to mitigate further transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Surface-enhanced Raman spectroscopy (SERS) has shown great potential in the sensitive and rapid detection of various molecules including viruses, through the identification of characteristic peaks of their outer membrane proteins. Accurate detection can be developed through the synergistic integration effect among SERS-active substrate, the appropriate laser wavelength, and the target analyte. In this study, gold nanocavities (Au NC) and Au nanoparticles upon ZrO2 nano-bowls (Au NPs/pZrO2) were tested and used as SERS-active substrates in detecting SARS-CoV-2 pseudovirus containing S protein as a surface capsid glycoprotein (SARS-CoV-2 S pseudovirus) and vesicular stomatitis virus G (VSV-G) pseudo-type lentivirus (VSV-G pseudovirus) to demonstrate their virus detection capability. The optimized Au NCs and Au NPs/pZrO2 substrates were then verified by examining the repetition of measurement, reproducibility, and detection limit. Due to the difference in geometry and composition of the substrates, the characteristic peak-positions of live SARS-CoV-2 S and VSV-G pseudoviruses in the obtained Raman spectra vary, which were also compared with those of inactivated ones. Based on the experimental results, SERS mechanism of each substrate to detect virus is proposed. The formation of hot spots brought by the synergistic integration effect among substrate, analyte, and laser induction may result differences in the obtained SERS spectra.


Assuntos
COVID-19 , Nanopartículas Metálicas , Ouro , Humanos , Pandemias , Reprodutibilidade dos Testes , SARS-CoV-2 , Análise Espectral Raman
6.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34638608

RESUMO

The delayed healing response of diabetic wounds is a major challenge for treatment. Negative pressure wound therapy (NPWT) has been widely used to treat chronic wounds. However, it usually requires a long treatment time and results in directional growth of wound healing skin tissue. We investigated whether nonthermal microplasma (MP) treatment can promote the healing of skin wounds in diabetic mice. Splint excision wounds were created on diabetic mice, and various wound healing parameters were compared among MP treatment, NPWT, and control groups. Quantitative analysis of the re-epithelialization percentage by detecting Ki67 and DSG1 expression in the extending epidermal tongue (EET) of the wound area and the epidermal proliferation index (EPI) was subsequently performed. Both treatments promoted wound healing by enhancing wound closure kinetics and wound bed blood flow; this was confirmed through histological analysis and optical coherence tomography. Both treatments also increased Ki67 and DSG1 expression in the EET of the wound area and the EPI to enhance re-epithelialization. Increased Smad2/3/4 mRNA expression was observed in the epidermis layer of wounds, particularly after MP treatment. The results suggest that the Smad-dependent transforming growth factor ß signaling contributes to the enhancement of re-epithelialization after MP treatment with an appropriate exposure time. Overall, a short-term MP treatment (applied for 30 s twice a day) demonstrated comparable or better efficacy to conventional NPWT (applied for 4 h once a day) in promoting wound healing in diabetic mice. Thus, MP treatment exhibits promise for treating diabetic wounds clinically.


Assuntos
Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/terapia , Tratamento de Ferimentos com Pressão Negativa/métodos , Gases em Plasma/uso terapêutico , Pele/lesões , Cicatrização/fisiologia , Animais , Desmogleína 1/metabolismo , Técnicas In Vitro , Antígeno Ki-67/metabolismo , Masculino , Camundongos , Camundongos Mutantes , Óxido Nítrico/metabolismo , Regeneração da Pele por Plasma/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reepitelização/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Transdução de Sinais , Pele/patologia , Pele/fisiopatologia , Proteínas Smad/genética , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Cicatrização/genética
7.
Materials (Basel) ; 14(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207811

RESUMO

Steel slag is a secondary product from steelmaking process through alkaline oxygen furnace or electric arc furnace (EAF). The disposal of steel slag has become a thorny environmental protection issue, and it is mainly used as unbound aggregates, e.g., as a secondary component of asphalt concrete used for road paving. In this study, the characteristics of compacted porous steel slag disc (SSD) and its application in phosphorous (P)-rich water filtration are discussed. The SSD with an optimal porosity of 10 wt% and annealing temperature of 900 °C, denoted as SSD-P (10, 900) meets a compressive strength required by ASTM C159-06, which has the capability of much higher than 90% P removal (with the effluent standard < 4 mg P/L) within 3 h, even after eight filtration times. No harmful substances from SSD have been detected in the filtered water, which complies with the effluent standard ISO 14001. The reaction mechanism for P-rich water filtration is mediated by water, followed by two reaction steps-CaO in SSD hydrolyzed from the matrix of SSD to Ca2+ and reacting with PO43-. However, the microenvironment of water is influenced by the pH value of the P-rich water at different filtration times and the kind of P-rich water with different free positive ion that interferes the reactions of the release of Ca2+. This study demonstrates the application of circular economy in reducing steel slag deposits, filtering P-rich water, and collecting Ca3(PO4)2 precipitate into fertilizers.

8.
Biosens Bioelectron ; 181: 113153, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33761416

RESUMO

The COVID-19 pandemic has caused a significant burden since December 2019 that has negatively impacted the global economy owing to the fact that the SARS-CoV-2 virus is fast-transmitting and highly contagious. Efforts have been taken to minimize the impact through strict screening measures in country borders in order to isolate potential virus carriers. Effective fast-screening methods are thus needed to identify infected individuals. The standard diagnostic methods for screening SARS-CoV-2 virus have always been to perform nucleic acid-based and serological tests. However, with each having drawbacks on producing false results at very early or later stage after symptoms onset, supplementary techniques are needed to back up these tests. Surface-enhanced Raman spectroscopy (SERS) as a detection technique has continuously advanced throughout the years in terms of sensitivity and capability to detect ultralow concentration of analytes ranging from single molecule to pathogens, to present as a highly potential alternative to known sensing methods. SERS technology as a candidate for an alternative and supplementary diagnostic method for the viral envelope of SARS-CoV-2 virus is presented, comparing its pros and cons to the standard methods and what other aspects it could offer that the other methods are not capable of. Factors that contribute to the detection effectivity of SERS is also discussed to show the advantages and limitations of this technique. Despite its promising capabilities, challenges like sources of SARS-CoV-2 virus and its variations, reliable SERS spectra, mass production of SERS-active substrates, and compliance to regulations for wide-scale testing scenario are highlighted.


Assuntos
Técnicas Biossensoriais , COVID-19/diagnóstico , SARS-CoV-2/isolamento & purificação , Análise Espectral Raman , Humanos , Ácidos Nucleicos , Pandemias
9.
Materials (Basel) ; 13(15)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722410

RESUMO

In repairing or replacing damaged bones, a dual concentric porous titanium scaffold (P-Tix-y) has emerged as a promising bio-mimic design. Herein, various P-Tix-y were made and sintered with relatively dense (x = 10, 20, or 30% porosity) and loose (y = 45, 55, or 65 porosity) structures. Firstly, NaCl was used as the pore-forming additive and followed by a hydrothermal removal method. The compressive strength of the as-formed P-Tix_y and surface morphology, nanomechanical property, and cells' affinity on the cross-sectioned surface of P-Tix_y (CP-Tix_y) were then characterized. The results demonstrate that the compressive strength of P-Ti10_45, P-Ti20_45, or P-Ti20_55 exhibits a relatively mild decline (e.g., in the range of 181 and 97 MPa, higher than the required value of 70 MPa) and suitable porosities for the intended structure. Nano-hardness on the solid surface of CP-Tix_y shows roughly consistent with that of CP-Ti (i.e., ~8.78 GPa), thus, the porous structure of CP-Tix_y remains mostly unaffected by the addition of NaCl and subsequent sintering process. Most of the surfaces of CP-Tix_y exhibit high fibroblast (L929) cell affinity with low cell mortality. Notably, in the hFOB 1.19 cell adhesion and proliferation test, CP-Ti20_55 and CP-Ti20_65 reveal high cell viability, most probably relating with the assembly of dual porosities with interconnected pores. Overall, the sample P-Ti20_55 provides a relatively load-bearable design with high cell affinity and is thus promising as a three-dimensional bio-scaffold.

10.
Nanomaterials (Basel) ; 9(12)2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31835301

RESUMO

Nanostructures with spikes (NSPs) have been a subject of several surface-enhanced Raman scattering (SERS) applications owing to their significant Raman signal enhancement brought about by the combined effects of interspike coupling and the accumulated induction on the tips of spikes. Thus, NSPs offer great potential as a SERS-active substrate for relevant applications that require a high density of enhanced "hot spots". In this study, Ag NSPs were synthesized in varying degrees of agglomeration and were thereafter deposited onto a transparent adhesive tape as a flexible substrate for SERS applications, specifically, in the detection of trace amounts of pesticides. These flexible substrates were referred to as Ag NSPs/tape and optimized with an enhancement factor (EF) of ca. 1.7 × 107. A strong resulting signal enhancement could be attributed to an optimal degree of agglomeration and, consequently, the distances among/between spikes. Long spikes on the synthesized core of Ag NSPs tend to be loosely spaced, which are suitable in detecting relatively large molecules that could access the spaces among the spikes where "hot spots" are generally formed. Since one side of the transparent tape is adhesive, the paste-and-peel off method was successful in obtaining phosmet and carbaryl residues from apple peels as reflected in the acquired SERS spectra. In situ trace detection of the pesticides at low concentrations down to 10-7 M could be demonstrated. In situ trace detection of mixed pesticides was possible as the characteristic peaks of both pesticides were observed in equimolar mixtures of the analytes at 10-2 to 10-4 M. This study is, thus, premised upon applying for in situ trace detection on e.g., fruit skin.

11.
Nanomaterials (Basel) ; 9(5)2019 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-31035555

RESUMO

Health risks posed by the exposure to trace amounts of pesticide residue in agricultural products have gained a lot of concerns, due to their neurotoxic nature. The applications of surface-enhanced Raman Scattering (SERS) as a detection technique have consistently shown its potential as a rapid and sensitive means with minimal sample preparation. In this study, gold nanoparticles (Au NPs) in elliptical shapes were collected into a layer of ordered zirconia concave pores. The porous zirconia layer (pZrO2) was then deposited with Au NPs, denoted as Au NPs (x)/pZrO2, where x indicates the deposition thickness of Au NPs in nm. In the concave structure of pZrO2, Au-ZrO2 and Au-Au interactions provide a synergistic and physical mechanism of SERS, which is anticipated to collect and amplify SERS signals and thereafter improve the enhancement factor (EF) of Au NPs/pZrO2. By taking Rhodamine 6G (R6G) as the test molecule, EF of Au NPs/pZrO2 might reach to 7.0 × 107. Au NPs (3.0)/pZrO2 was then optimized and competent to detect pesticides, e.g., phosmet and carbaryl at very low concentrations, corresponding to the maximum residue limits of each, i.e., 0.3 ppm and 0.2 ppm, respectively. Au NPs (3.0)/pZrO2 also showed the effectiveness of distinguishing between phosmet and carbaryl under mixed conditions. Due to the strong affinities of the phosphoric groups and sulfur in phosmet to the Au NPs (3.0)/pZrO2, the substrate exhibited selective detection to this particular pesticide. In this study, Au NPs (3.0)/pZrO2 has thus demonstrated trace detection of residual pesticides, due to the substrate design that intended to provide collective amplification of SERS.

12.
Nanomaterials (Basel) ; 8(12)2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30486259

RESUMO

Strontium oxide (SrO) deposited onto a porous titanium (Ti)-based scaffold (P-Ti) is a promising and novel approach for high-throughput transesterification. Notably, a highly porous and calcinated scaffold provides a load-bearable support for a continuous process, while the calcinated SrO catalyst, as it is well distributed inside the porous matrix, can extend its surface contact area with the reactant. In this work, the formation of transesterification reaction with the conversion and production of olive oil to biodiesel inside the porous matrix is particularly examined. The as-designed SrO-coated porous titanium (Ti)-based scaffold with 55% porosity was prepared via a hydrothermal procedure, followed by a dip coating method. Mechanical tests of samples were conducted by a nanoindentator, whereas the physical and chemical structures were identified by IR and Raman Spectroscopies. The results implied that SrO catalysts can be firmly deposited onto a load-bearable, highly porous matrix and play an effective role for the transesterification reaction with the oil mass. It is promising to be employed as a load-bearable support for a continuous transesterification process, such as a process for batch or continuous biodiesel production, under an efficient heating source by a focused microwave system.

13.
Nanomaterials (Basel) ; 8(6)2018 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-29865286

RESUMO

Trace detection of common pesticide residue is necessary to assure safety of fruit and vegetables, given that the potential health risk to consumers is attributed to the contamination of the sources. A simple, rapid and effective means of finding the residue is however required for household purposes. In recent years, the technique in association with surface-enhanced Raman scattering (SERS) has been well developed in particular for trace detection of target molecules. Herein, gold nanoparticles (Au NPs) were integrated with sol-gel spin-coated Zirconia nanofibers (ZrO2 NFs) as a chemically stable substrate and used for SERS application. The morphologies of Au NPs/ZrO2 NFs were adjusted by the precursor concentrations (_X, X = 0.05⁻0.5 M) and the effect of SERS on Au NPs/ZrO2 NFs_X was evaluated by different Raman laser wavelengths using rhodamine 6G as the probe molecule at low concentrations. The target pesticides, phosmet (P1), carbaryl (C1), permethrin (P2) and cypermethrin (C2) were thereafter tested and analyzed. Au NPs/ZrO2 NFs_0.3 exhibited an enhancement factor of 2.1 × 107, which could detect P1, C1, P2 and C2 at the concentrations down to 10-8, 10-7, 10-7 and 10-6 M, respectively. High selectivity to the organophosphates was also found. As the pesticides were dip-coated on an apple and then measured on the diluted juice containing sliced apple peels, the characteristic peaks of each pesticide could be clearly identified. It is thus promising to use NPs/ZrO2 NFs_0.3 as a novel SERS-active substrate for trace detection of pesticide residue upon, for example, fruits or vegetables.

14.
J Phys Chem Lett ; 8(21): 5290-5295, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29016136

RESUMO

Protein tyrosine sulfation (PTS) is a key modulator of extracellular protein-protein interaction (PPI), which regulates principal biological processes. For example, the capsid protein VP1 of enterovirus 71 (EV71) specifically interacts with sulfated P-selectin glycoprotein ligand-1 (PSGL-1) to facilitate virus invasion. Currently available methods cannot be used to directly observe PTS-induced PPI. In this study, atomic force microscopy was used to measure the interaction between sulfated or mutated PSGL-1 and VP1. We found that the binding strength increased by 6.7-fold following PTS treatment on PSGL-1 with a specific antisulfotyrosine antibody. Similar results were obtained when the antisulfotyrosine antibody was replaced with the VP1 protein of EV71; however, the interaction forces of VP1 were only approximately one-third of those of the antisulfotyrosine antibody. We also found that PTS on the tyrosine-51 residue of glutathione S-transferases fusion-PSGL-1 was mainly responsible for the PTS-induced PPI. Our results contribute to the fundamental understanding of PPI regulated through PTS.


Assuntos
Proteínas do Capsídeo/fisiologia , Glicoproteínas de Membrana/fisiologia , Microscopia de Força Atômica , Proteínas Virais/fisiologia , Glutationa Transferase/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Glicoproteínas de Membrana/genética , Mutação , Tirosina/metabolismo , Ligação Viral
15.
Materials (Basel) ; 10(6)2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28772930

RESUMO

The surface morphologies and microstructures of Zirconia Toughened Alumina (ZTA) femoral heads were analyzed following in vitro tests aiming to simulate in vivo degradation. Three phenomena potentially leading to degradation were investigated: shocks, friction and hydrothermal ageing. Shocks due to micro-separation created the main damage with the formation of wear stripes on the femoral head surfaces. Atomic Force Microscopy (AFM) images suggested the release of wear debris of various shapes and sizes through inter- and intra-granular cracks; some debris may have a size lower than 100 nm. A decrease in hardness and Young's modulus was measured within the wear stripes by nanoindentation technique and was attributed to the presence of surface and sub-surface micro-cracks. Such micro-cracks mechanically triggered the zirconia phase transformation in those worn areas, which in return presumably reduced further crack propagation. In comparison with shocks, friction caused little wear degradation as observed from AFM images by scarce pullout of grains. The long-term resistance of the ZTA composite material against hydrothermal ageing is confirmed by the present observations.

16.
Materials (Basel) ; 10(7)2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28773090

RESUMO

Porous titanium (P_Ti) is considered as an effective material for bone scaffold to achieve a stiffness reduction. Herein, biomimetic (bio-)scaffolds were made of sintered P_Ti, which used NaCl as the space holder and had it removed via the hydrothermal method. X-ray diffraction results showed that the subsequent sintering temperature of 1000 °C was the optimized temperature for preparing P_Ti. The compressive strength of P_Ti was measured using a compression test, which revealed an excellent load-bearing ability of above 70 MPa for that with an addition of 50 wt % NaCl (P_Ti_50). The nano-hardness of P_Ti, tested upon their solid surface, was presumably consistent with the density of pores vis-à-vis the addition of NaCl. Overall, a load-bearable P_Ti with a highly porous structure (e.g., P_Ti_50 with a porosity of 43.91% and a pore size around 340 µm) and considerable compressive strength could be obtained through the current process. Cell proliferation (MTS) and lactate dehydrogenase (LDH) assays showed that all P_Ti samples exhibited high cell affinity and low cell mortality, indicating good biocompatibility. Among them, P_Ti_50 showed relatively good in-cell morphology and viability, and is thus promising as a load-bearable bio-scaffold.

17.
Biointerphases ; 11(4): 04B311, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27998155

RESUMO

The mechanical properties of the extracellular matrix play an important role in bio-microenvironment activities. Herein, atomic force microscope (AFM) was used to measure the interaction between Au and Ag nanoparticle (NP) clusters on the surface of human fetal lung cells. Using (3-mercapto-propyl) triethoxysilane (MPTMS), NP clusters were grafted onto the apex of AFM tip, and then, the adhesion force between the tip and the cell was analyzed. The measured adhesion force increased from 92 pN for AFM tip to 332 pN for that modified with MPTMS. The increase is most probably contributed by the nonspecific interactions between the apex of the modified AFM tip and the surface of the cells. The adhesion forces between the surface of NPs clusters grafted AFM tip and that of lung cells were dramatically reduced as NPs clusters were replaced by MPTMS. For the former, as the Au NPs cluster was applied, the adhesion force reached to 122 pN, whereas it significantly augmented with the addition of the cluster's size and dimension on the AFM tip. For the case of Ag cluster grafted on AFM tip, its adhesion force with the surface of the cells significantly lowered and reduced to 56 pN. Presumably, the electrostatic or van der Waals force between the two surfaces results in the variation of measurements. It is also very likely that the cell-surface interactions are probably varied by the nature of the contact surfaces, like the force-distance of attraction. The result is significant for understanding the the nature of the interactions between the surface of NPs and the membrane of lung cells.


Assuntos
Adesão Celular , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Ouro/metabolismo , Microscopia de Força Atômica/métodos , Nanopartículas/metabolismo , Prata/metabolismo , Células Cultivadas , Humanos
18.
PLoS One ; 11(6): e0156699, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27248979

RESUMO

Micro-plasma is a possible alternative treatment for wound management. The effect of micro-plasma on wound healing depends on its composition and temperature. The authors previously developed a capillary-tube-based micro-plasma system that can generate micro-plasma with a high nitric oxide-containing species composition and mild working temperature. Here, the efficacy of micro-plasma treatment on wound healing in a laser-induced skin wound mouse model was investigated. A partial thickness wound was created in the back skin of each mouse and then treated with micro-plasma. Non-invasive methods, namely wound closure kinetics, optical coherence tomography (OCT), and laser Doppler scanning, were used to measure the healing efficiency in the wound area. Neo-tissue growth and the expressions of matrix metallopeptidase-3 (MMP-3) and laminin in the wound area were assessed using histological and immunohistochemistry (IHC) analysis. The results show that micro-plasma treatment promoted wound healing. Micro-plasma treatment significantly reduced the wound bed region. The OCT images and histological analysis indicates more pronounced tissue regrowth in the wound bed region after micro-plasma treatment. The laser Doppler images shows that micro-plasma treatment promoted blood flow in the wound bed region. The IHC results show that the level of laminin increased in the wound bed region after micro-plasma treatment, whereas the level of MMP-3 decreased. Based on these results, micro-plasma has potential to be used to promote the healing of skin wounds clinically.


Assuntos
Dióxido de Carbono/administração & dosagem , Lasers , Cicatrização , Ferimentos e Lesões/etiologia , Animais , Argônio , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nitrogênio
19.
Biomacromolecules ; 16(10): 3248-55, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26366749

RESUMO

Chitosan nanofibers have been electrospun with poly(ethylene oxide) and silver nitrate, as a coelectrospinning polymer and silver nanoparticle precursor, respectively. The average diameter of the as-spun chitosan nanofibers with up to 2 wt % silver nitrate loading was approximately 130 nm, and there was no evidence of bead formation or polymer agglomeration. Argon plasma was then applied for surface etching and synthesis of silver nanoparticles via precursor decomposition. Plasma surface bombardment induced nanoparticle formation primarily on the chitosan nanofiber surfaces, and the moderate surface plasma etching further encouraged maximum exposure of silver nanoparticles. UV-vis spectra showed the surface plasmon resonance signature of silver nanoparticles. The surface-immobilized nanoparticles were visualized by TEM and were found to have average particle diameters as small as 1.5 nm. Surface analysis by infrared spectroscopy and X-ray photoelectron spectroscopy confirmed the interactions between the silver nanoparticles and chitosan molecules, as well as the effect of plasma treatment on the nanofiber surfaces. Finally, a bacteria inhibition study revealed that the antibacterial activity of the electrospun chitosan nanofibers correspondingly increased with the plasma-synthesized silver nanoparticles.


Assuntos
Antibacterianos/farmacologia , Quitosana/química , Nanopartículas Metálicas/química , Nanofibras , Gases em Plasma , Prata/química , Antibacterianos/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
20.
Biosens Bioelectron ; 72: 61-70, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25957832

RESUMO

Well-ordered Au-nanorod arrays were fabricated using the focused ion beam method (denoted as fibAu_NR). Au or Ag nanoclusters (NCs) of various sizes and dimensions were then deposited on the fibAu_NR arrays using electron beam deposition to improve the surface-enhanced Raman scattering (SERS) effect, which was verified using a low concentration of crystal violet (10(-)(5)M) as the probe molecule. An enhancement factor of 6.92 × 10(8) was obtained for NCsfibAu_NR, which is attributed to the combination of intra-NC and NR localized surface plasmon resonance. When 4-aminobenzenethiol (4-ABT)-coated Au or Ag nanoparticles (NPs) were attached to NCsfibAu_NR, the small gaps between 4-ABT-coated NPs and intra-NCs allowed detection at the single-molecule level. Hotspots formed at the interfaces of NCs/NRs and NPs/NCs at a high density, producing a strong local electromagnetic effect. Raman spectra from as-prepared type I collagen (Col-I) and Ag-NP-coated Col-I fibers on NCsfibAu_NR were compared to determine the quantity of amino acids in their triple helix structure. Various concentrations of matrix-metalloproteinase-9-digested Col-I fibers on NCsfibAu_NR were qualitatively examined at a Raman laser wavelength of 785nm to determine the changes of amino acids in the Col-I fiber structure. The results can be used to monitor the growth of healing Col-I fibers in a micro-environment.


Assuntos
Colágeno Tipo I/análise , Ouro/química , Metaloproteinase 9 da Matriz/metabolismo , Nanopartículas Metálicas/química , Prata/química , Análise Espectral Raman/métodos , Animais , Técnicas Biossensoriais/métodos , Colágeno Tipo I/metabolismo , Nanopartículas Metálicas/ultraestrutura , Nanotubos/química , Nanotubos/ultraestrutura , Ratos , Ácidos Sulfanílicos/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA