Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 201: 105884, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685250

RESUMO

Botrytis cinerea is one of the most destructive pathogens worldwide. It can damage over 200 crops, resulting in significant yield and quality losses. Cyclobutrifluram, a new generation of succinate dehydrogenase inhibitors, exhibits excellent inhibitory activity against B. cinerea. However, the baseline sensitivity and resistance of B. cinerea to cyclobutrifluram remains poorly understood. This study was designed to monitor the sensitivity frequency distribution, assess the resistance risk, and clarify the resistance mechanism of B. cinerea to cyclobutrifluram. The baseline sensitivity of B. cinerea isolates to cyclobutrifluram was 0.89 µg/mL. Cyclobutrifluram-resistant B. cinerea populations are present in the field. Six resistant B. cinerea isolates investigated in this study possessed enhanced compound fitness index compared to the sensitive isolates according to mycelial growth, mycelial dry weight, conidiation, conidial germination rate, and pathogenicity. Cyclobutrifluram exhibited no cross-resistance with tebuconazole, fludioxonil, cyprodinil, or iprodione. Sequence alignment revealed that BcSDHB from cyclobutrifluram-resistant B. cinerea isolates had three single substitutions (P225F, N230I, or H272R). Molecular docking verified that these mutations in BcSDHB conferred cyclobutrifluram resistance in B. cinerea. In conclusion, the resistance risk of B. cinerea to cyclobutrifluram is high, and the point mutations in BcSDHB (P225F, N230I, or H272R) confer cyclobutrifluram resistance in B. cinerea. This study provided important insights into cyclobutrifluram resistance in B. cinerea and offered valuable information for monitoring and managing cyclobutrifluram resistance in the future.


Assuntos
Botrytis , Farmacorresistência Fúngica , Fungicidas Industriais , Norbornanos , Mutação Puntual , Pirazóis , Botrytis/efeitos dos fármacos , Botrytis/genética , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , China , Succinato Desidrogenase/genética , Proteínas Fúngicas/genética , Doenças das Plantas/microbiologia
2.
Pestic Biochem Physiol ; 197: 105677, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072534

RESUMO

Tomato early blight is a significant disease that causes substantial losses to tomato yield and quality. Mefentrifluconazole, an isopropanol-azole subgroup of triazole fungicides, has been registered in China for controlling various plant diseases, including tomato early blight, grape anthracnose, and apple brown spot. However, limited information is available on the mefentrifluconazole resistance risk and mechanism in plant pathogens. The sensitivity to mefentrifluconazole of 122 isolates of Alternaria alternata, one of the causal agents of tomato early blight, collected from different provinces in China, was evaluated. The results showed a unimodal curve for the sensitivity frequency, with an average EC50 of 0.306 µg/mL. Through fungicide adaption, six resistant mutants (N4, N5, T4, T5, NG1, and NG10) were obtained from three parental isolates, with a mutation frequency of 3.28 × 10-4 and resistance factors ranging between 19 and 147. The survival fitness of the resistant mutants, except for NG1, was significantly lower than that of their parental isolates. Positive cross-resistance was observed between mefentrifluconazole and difenoconazole or fenbuconazole, whereas no cross-resistance was found with three non-DMI fungicides. Furthermore, three distinct point mutations were detected in the AaCYP51 protein of the resistant mutants: I300S in T4 and T5; A303T in N4, NG1, and NG10; and A303V in N5. Compared to the parental isolates, the AaCYP51 gene was overexpressed in all six resistant mutants when treated with mefentrifluconazole. In summary, the resistance risk of A. alternata to mefentrifluconazole was low, and point mutations and overexpression of the AaCYP51 gene were identified as contributing factors to mefentrifluconazole resistance in A. alternata.


Assuntos
Fungicidas Industriais , Fungicidas Industriais/farmacologia , Mutação Puntual , Alternaria/genética
3.
J Agric Food Chem ; 71(17): 6552-6560, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37071710

RESUMO

Amisulbrom is a novel quinone inside inhibitor, which exhibits excellent inhibitory activity against phytopathogenic oomycetes. However, the resistance risk and mechanism of amisulbrom in Phytophthora litchii are rarely reported. In this study, the sensitivity of 147 P. litchii isolates to amisulbrom was determined, with an average EC50 of 0.24 ± 0.11 µg/mL. The fitness of resistant mutants, obtained by fungicide adaption, was significantly lower than that of the parental isolates in vitro. Cross-resistance was detected between amisulbrom and cyazofamid. Amisulbrom could not inhibit the cytochrome bc1 complex activity with H15Y and G30E + F220L point mutations in cytochrome b (Cyt b) in vitro. Molecular docking indicated that the H15Y or G30E point mutation can decrease the binding energy between amisulbrom and P. litchii Cyt b. In conclusion, P. litchii might have a medium resistance risk to amisulbrom, and a novel point mutation H15Y or G30E in Cyt b could cause high amisulbrom resistance in P. litchii.


Assuntos
Fungicidas Industriais , Phytophthora , Mutação Puntual , Citocromos b/genética , Simulação de Acoplamento Molecular , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Quinonas , Doenças das Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA