Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Front Microbiol ; 15: 1427143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113839

RESUMO

Introduction: Chitin, abundant in marine environments, presents significant challenges in terms of transformation and utilization. A strain, T22.7.1T, with notable chitin deacetylation capabilities, was isolated from the rhizosphere of Acanthus ebracteatus in the North Sea of China. Comparative 16S rDNA sequence analysis showed that the new isolate had the highest sequence similarity (99.79%) with Rhodococcus indonesiensis CSLK01-03T, followed by R. ruber DSM 43338T, R. electrodiphilus JC435T, and R. aetherivorans 10bc312T (98.97%, 98.81%, and 98.83%, respectively). Subsequent genome sequencing and phylogenetic analysis confirmed that strain T22.7.1T belongs to the R. indonesiensis species. However, additional taxonomic characterization identified strain T22.7.1T as a novel type strain of R. indonesiensis distinct from CSLK01-03T. Methods: This study refines the taxonomic description of R. indonesiensis and investigates its application in converting chitin into chitosan. The chitin deacetylase (RiCDA) activity of strain T22.7.1T was optimized, and the enzyme was isolated and purified from the fermentation products. Results: Through optimization, the RiCDA activity of strain T22.7.1T reached 287.02 U/mL, which is 34.88 times greater than the original enzyme's activity (8.0 U/mL). The natural CDA enzyme was purified with a purification factor of 31.83, and the specific activity of the enzyme solution reached 1200.33 U/mg. RiCDA exhibited good pH and temperature adaptability and stability, along with a wide range of substrate adaptabilities, effectively deacetylating chitin, chitooligosaccharides, N-acetylglucosamine, and other substrates. Discussion: Product analysis revealed that RiCDA treatment increased the deacetylation degree (DD) of natural chitin to 83%, surpassing that of commercial chitosan. Therefore, RiCDA demonstrates significant potential as an efficient deacetylation tool for natural chitin and chitooligosaccharides, highlighting its applicability in the biorefining of natural polysaccharides.

2.
Curr Issues Mol Biol ; 46(6): 5682-5700, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38921011

RESUMO

It is known that sialyllactose (SL) in mammalians is a major source of sialic acid (Sia), which can further form cytidine monophosphate sialic acid (CMP-Sia), and the final product is polysialic acid (polySia) using polysialyltransferases (polySTs) on the neural cell adhesion molecule (NCAM). This process is called NCAM polysialylation. The overexpression of polysialylation is strongly related to cancer cell migration, invasion, and metastasis. In order to inhibit the overexpression of polysialylation, in this study, SL was selected as an inhibitor to test whether polysialylation could be inhibited. Our results suggest that the interactions between the polysialyltransferase domain (PSTD) in polyST and CMP-Siaand the PSTD and polySia could be inhibited when the 3'-sialyllactose (3'-SL) or 6'-sialyllactose (6'-SL) concentration is about 0.5 mM or 6'-SL and 3 mM, respectively. The results also show that SLs (particularly for 3'-SL) are the ideal inhibitors compared with another two inhibitors, low-molecular-weight heparin (LMWH) and cytidine monophosphate (CMP), because 3'-SL can not only be used to inhibit NCAM polysialylation, but is also one of the best supplements for infant formula and the gut health system.

3.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731861

RESUMO

The expression of polysialic acid (polySia) on the neuronal cell adhesion molecule (NCAM) is called NCAM-polysialylation, which is strongly related to the migration and invasion of tumor cells and aggressive clinical status. Thus, it is important to select a proper drug to block tumor cell migration during clinical treatment. In this study, we proposed that lactoferrin (LFcinB11) may be a better candidate for inhibiting NCAM polysialylation when compared with CMP and low-molecular-weight heparin (LMWH), which were determined based on our NMR studies. Furthermore, neutrophil extracellular traps (NETs) represent the most dramatic stage in the cell death process, and the release of NETs is related to the pathogenesis of autoimmune and inflammatory disorders, with proposed involvement in glomerulonephritis, chronic lung disease, sepsis, and vascular disorders. In this study, the molecular mechanisms involved in the inhibition of NET release using LFcinB11 as an inhibitor were also determined. Based on these results, LFcinB11 is proposed as being a bifunctional inhibitor for inhibiting both NCAM polysialylation and the release of NETs.


Assuntos
Armadilhas Extracelulares , Lactoferrina , Moléculas de Adesão de Célula Nervosa , Ácidos Siálicos , Lactoferrina/farmacologia , Lactoferrina/metabolismo , Humanos , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , Moléculas de Adesão de Célula Nervosa/metabolismo , Ácidos Siálicos/metabolismo , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Heparina de Baixo Peso Molecular/farmacologia
4.
J Enzyme Inhib Med Chem ; 38(1): 2248411, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37615033

RESUMO

The overexpression of polysialic acid (polySia) on neural cell adhesion molecules (NCAM) promotes hypersialylation, and thus benefits cancer cell migration and invasion. It has been proposed that the binding between the polysialyltransferase domain (PSTD) and CMP-Sia needs to be inhibited in order to block the effects of hypersialylation. In this study, CMP was confirmed to be a competitive inhibitor of polysialyltransferases (polySTs) in the presence of CMP-Sia and triSia (oligosialic acid trimer) based on the interactional features between molecules. The further NMR analysis suggested that polysialylation could be partially inhibited when CMP-Sia and polySia co-exist in solution. In addition, an unexpecting finding is that CMP-Sia plays a role in reducing the gathering extent of polySia chains on the PSTD, and may benefit for the inhibition of polysialylation. The findings in this study may provide new insight into the optimal design of the drug and inhibitor for cancer treatment.


Assuntos
Movimento Celular
5.
Curr Top Med Chem ; 21(13): 1113-1120, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34259146

RESUMO

The polysialic acid (polySia) is a unique carbohydrate polymer produced on the surface of Neuronal Cell Adhesion Molecule (NCAM) in a number of cancer cells, and strongly correlates with the migration and invasion of tumor cells and with aggressive, metastatic disease and poor clinical prognosis in the clinic. Its synthesis is catalyzed by two polysialyltransferases (polySTs), ST8SiaIV (PST) and ST8SiaII (STX). Selective inhibition of polySTs, therefore, presents a therapeutic opportunity to inhibit tumor invasion and metastasis due to NCAM polysialylation. It has been proposed that NCAM polysialylation could be inhibited by two types of heparin inhibitors, low molecular heparin (LMWH) and heparin tetrasaccharide (DP4). This review summarizes how the interactions between Polysialyltransferase Domain (PSTD) in ST8SiaIV and CMP-Sia, and between the PSTD and polySia take place, and how these interactions are inhibited by LMWH and DP4. Our NMR studies indicate that LMWH is a more effective inhibitor than DP4 for inhibition of NCAM polysialylation. The NMR identification of heparin-binding sites in the PSTD may provide insight into the design of specific inhibitors of polysialylation.


Assuntos
Inibidores Enzimáticos/farmacologia , Heparina/farmacologia , Sialiltransferases/antagonistas & inibidores , Inibidores Enzimáticos/química , Heparina/química , Humanos , Domínios Proteicos/efeitos dos fármacos , Sialiltransferases/metabolismo
6.
J Microbiol Biotechnol ; 30(10): 1467-1479, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32699200

RESUMO

Profiling the transcriptome changes involved in xylose metabolism by the fungus Trichoderma reesei allows for the identification of potential targets for ethanol production processing. In the present study, the transcriptome of T. reesei HJ-48 grown on xylose versus glucose was analyzed using nextgeneration sequencing technology. During xylose fermentation, numerous genes related to central metabolic pathways, including xylose reductase (XR) and xylitol dehydrogenase (XDH), were expressed at higher levels in T. reesei HJ-48. Notably, growth on xylose did not fully repress the genes encoding enzymes of the tricarboxylic acid and respiratory pathways. In addition, increased expression of several sugar transporters was observed during xylose fermentation. This study provides a valuable dataset for further investigation of xylose fermentation and provides a deeper insight into the various genes involved in this process.


Assuntos
Fermentação , Glucose/metabolismo , Hypocreales/genética , Xilose/metabolismo , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , D-Xilulose Redutase/genética , D-Xilulose Redutase/metabolismo , Etanol/metabolismo , Hypocreales/metabolismo , Análise de Sequência de RNA , Transcriptoma
7.
Int J Mol Sci ; 21(5)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111064

RESUMO

Polysialic acid (polySia) is an unusual glycan that posttranslational modifies neural cell adhesion molecule (NCAM) proteins in mammalian cells. The up-regulated expression of polySia-NCAM is associated with tumor progression in many metastatic human cancers and in neurocognitive processes. Two members of the ST8Sia family of α2,8-polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST) both catalyze synthesis of polySia when activated cytidine monophosphate(CMP)-Sialic acid (CMP-Sia) is translocate into the lumen of the Golgi apparatus. Two key polybasic domains in the polySTs, the polybasic region (PBR) and the polysialyltransferase domain (PSTD) areessential forpolysialylation of the NCAM proteins. However, the precise molecular details to describe the interactions required for polysialylation remain unknown. In this study, we hypothesize that PSTD interacts with both CMP-Sia and polySia to catalyze polysialylation of the NCAM proteins. To test this hypothesis, we synthesized a 35-amino acid-PSTD peptide derived from the ST8Sia IV gene sequence and used it to study its interaction with CMP-Sia, and polySia. Our results showed for the PSTD-CMP-Sia interaction,the largest chemical-shift perturbations (CSP) were in amino acid residues V251 to A254 in the short H1 helix, located near the N-terminus of PSTD. However, larger CSP values for the PSTD-polySia interaction were observed in amino acid residues R259 to T270 in the long H2 helix. These differences suggest that CMP-Sia preferentially binds to the domain between the short H1 helix and the longer H2 helix. In contrast, polySia was principally bound to the long H2 helix of PSTD. For the PSTD-polySia interaction, a significant decrease in peak intensity was observed in the 20 amino acid residues located between the N-and C-termini of the long H2 helix in PSTD, suggesting a slower motion in these residues when polySia bound to PSTD. Specific features of the interactions between PSTD-CMP-Sia, and PSTD-polySia were further confirmed by comparing their 800 MHz-derived HSQC spectra with that of PSTD-Sia, PSTD-TriSia (DP 3) and PSTD-polySia. Based on the interactions between PSTD-CMP-Sia, PSTD-polySia, PBR-NCAM and PSTD-PBR, these findingsprovide a greater understanding of the molecular mechanisms underlying polySia-NCAM polysialylation, and thus provides a new perspective for translational pharmacological applications and development by targeting the two polysialyltransferases.


Assuntos
Ácido N-Acetilneuramínico do Monofosfato de Citidina/metabolismo , Imageamento por Ressonância Magnética/métodos , Moléculas de Adesão de Célula Nervosa/metabolismo , Ácidos Siálicos/metabolismo , Sialiltransferases/química , Sialiltransferases/metabolismo , Complexo de Golgi/metabolismo , Humanos , Modelos Moleculares , Polimerização , Conformação Proteica , Domínios Proteicos
8.
Curr Top Med Chem ; 19(31): 2831-2841, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31755393

RESUMO

ST8Sia II (STX) is a highly homologous mammalian polysialyltransferase (polyST), which is a validated tumor-target in the treatment of cancer metastasis reliant on tumor cell polysialylation. PolyST catalyzes the synthesis of α2,8-polysialic acid (polySia) glycans by carrying out the activated CMP-Neu5Ac (Sia) to N- and O-linked oligosaccharide chains on acceptor glycoproteins. In this review article, we summarized the recent studies about intrinsic correlation of two polybasic domains, Polysialyltransferase domain (PSTD) and Polybasic region (PBR) within ST8Sia II molecule, and suggested that the critical amino acid residues within the PSTD and PBR motifs of ST8Sia II for polysialylation of Neural cell adhesion molecules (NCAM) are related to ST8Sia II activity. In addition, the conformational changes of the PSTD domain due to point mutations in the PBR or PSTD domain verified an intramolecular interaction between the PBR and the PSTD. These findings have been incorporated into Zhou's NCAM polysialylation/cell migration model, which will provide new perspectives on drug research and development related to the tumor-target ST8Sia II.


Assuntos
Inibidores Enzimáticos/farmacologia , Sialiltransferases/antagonistas & inibidores , Animais , Inibidores Enzimáticos/química , Humanos , Mutação Puntual , Domínios Proteicos , Sialiltransferases/genética , Sialiltransferases/metabolismo
9.
Curr Top Med Chem ; 19(25): 2271-2282, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31648641

RESUMO

Polysialic acid (polySia) is a novel glycan that posttranslationally modifies neural cell adhesion molecules (NCAMs) in mammalian cells. Up-regulation of polySia-NCAM expression or NCAM polysialylation is associated with tumor cell migration and progression in many metastatic cancers and neurocognition. It has been known that two highly homologous mammalian polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST), can catalyze polysialylation of NCAM, and two polybasic domains, polybasic region (PBR) and polysialyltransferase domain (PSTD) in polySTs play key roles in affecting polyST activity or NCAM polysialylation. However, the molecular mechanisms of NCAM polysialylation and cell migration are still not entirely clear. In this minireview, the recent research results about the intermolecular interactions between the PBR and NCAM, the PSTD and cytidine monophosphate-sialic acid (CMP-Sia), the PSTD and polySia, and as well as the intramolecular interaction between the PBR and the PSTD within the polyST, are summarized. Based on these cooperative interactions, we have built a novel model of NCAM polysialylation and cell migration mechanisms, which may be helpful to design and develop new polysialyltransferase inhibitors.


Assuntos
Movimento Celular , Moléculas de Adesão de Célula Nervosa/metabolismo , Ácidos Siálicos/metabolismo , Animais , Humanos , Moléculas de Adesão de Célula Nervosa/química , Ácidos Siálicos/química
10.
Biotechnol Lett ; 41(10): 1187-1200, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31418101

RESUMO

OBJECTIVES: Bifunctional alginate lyase can efficiently saccharify alginate biomass and prepare functional oligosaccharides of alginate. RESULTS: A new BP-2 strain that produces alginate lyase was screened and identified from rotted Sargassum. A new alginate lyase, Alg17B, belonging to the polysaccharide lyase family 17, was isolated and purified from BP-2 fermentation broth by freeze-drying, dialysis, and ion exchange chromatography. The enzymatic properties of the purified lyase were investigated. The molecular weight of Alg17B was approximately 77 kDa, its optimum reaction temperature was 40-45 °C, and its optimum reaction pH was 7.5-8.0. The enzyme was relatively stable at pH 7.0-8.0, with a temperature range of 25-35 °C, and the specific activity of the purified enzyme reached 4036 U/mg. A low Na+ concentration stimulated Alg17B enzyme activity, but Ca2+, Zn2+, and other metal ions inhibited it. Substrate specificity analysis, thin-layer chromatography, and mass spectrometry showed that Alg17B is an alginate lyase that catalyses the hydrolysis of sodium alginate, polymannuronic acid (polyM) and polyguluronic acid to produce monosaccharides and low molecular weight oligosaccharides. Alg17B is also bifunctional, exhibiting both endolytic and exolytic activities toward alginate, and has a wide substrate utilization range with a preference for polyM. CONCLUSIONS: Alg17B can be used to saccharify the main carbohydrate, alginate, in the ethanolic production of brown algae fuel as well as in preparing and researching oligosaccharides.


Assuntos
Organismos Aquáticos/enzimologia , Gammaproteobacteria/enzimologia , Polissacarídeo-Liases/isolamento & purificação , Polissacarídeo-Liases/metabolismo , Sargassum/microbiologia , Alginatos/metabolismo , Ácido Algínico/metabolismo , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Organismos Aquáticos/isolamento & purificação , Ativadores de Enzimas/análise , Inibidores Enzimáticos/análise , Estabilidade Enzimática , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Concentração de Íons de Hidrogênio , Hidrólise , Peso Molecular , Monossacarídeos/metabolismo , Oligossacarídeos/metabolismo , Polissacarídeo-Liases/química , Polissacarídeo-Liases/genética , Polissacarídeos Bacterianos/metabolismo , Especificidade por Substrato , Temperatura
11.
Protein Pept Lett ; 26(2): 148-157, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30652633

RESUMO

BACKGROUND: α-Amylases are starch-degrading enzymes and used widely, the study on thermostability of α-amylase is a central requirement for its application in life science and biotechnology. OBJECTIVE: In this article, our motivation is to study how the effect of Ca2+ ions on the structure and thermal characterization of α-amylase (AGXA) from thermophilic Anoxybacillus sp.GXS-BL. METHODS: α-Amylase activity was assayed with soluble starch as the substrate, and the amount of sugar released was determined by DNS method. For AGXA with calcium ions and without calcium ions, optimum temperature (Topt), half-inactivation temperature (T50) and thermal inactivation (halflife, t1/2) was evaluated. The thermal denaturation of the enzymes was determined by DSC and CD methods. 3D structure of AGXA was homology modeled with α-amylase (5A2A) as the template. RESULTS: With calcium ions, the values of Topt, T50, t1/2, Tm and ΔH in AGXA were significantly higher than those of AGXA without calcium ions, showing calcium ions had stabilizing effects on α-amylase structure with the increased temperature. Based on DSC measurements AGXA underwent thermal denaturation by adopting two-state irreversible unfolding processes. Based on the CD spectra, AGXA without calcium ions exhibited two transition states upon unfolding, including α- helical contents increasing, and the transition from α-helices to ß-sheet structures, which was obviously different in AGXA with Ca2+ ions, and up to 4 Ca2+ ions were located on the inter-domain or intra-domain regions according to the modeling structure. CONCLUSION: These results reveal that Ca2+ ions have pronounced influences on the thermostability of AGXA structure.


Assuntos
Anoxybacillus/enzimologia , Cálcio/química , alfa-Amilases/química , Estabilidade Enzimática , Íons/química , Cinética , Conformação Proteica , Dobramento de Proteína , Temperatura , Termodinâmica , alfa-Amilases/isolamento & purificação
12.
Med Chem ; 15(5): 510-520, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30556504

RESUMO

BACKGROUND: Inhibition of α-amylase activity is an important strategy in the treatment of diabetes mellitus. An important treatment for diabetes mellitus is to reduce the digestion of carbohydrates and blood glucose concentrations. Inhibiting the activity of carbohydrate-degrading enzymes such as α-amylase and glucosidase significantly decreases the blood glucose level. Most inhibitors of α-amylase have serious adverse effects, and the α-amylase inactivation mechanisms for the design of safer inhibitors are yet to be revealed. OBJECTIVE: In this study, we focused on the inhibitory effect of Zn2+ on the structure and dynamic characteristics of α-amylase from Anoxybacillus sp. GXS-BL (AGXA), which shares the same catalytic residues and similar structures as human pancreatic and salivary α-amylase (HPA and HSA, respectively). METHODS: Circular dichroism (CD) spectra of the protein (AGXA) in the absence and presence of Zn2+ were recorded on a Chirascan instrument. The content of different secondary structures of AGXA in the absence and presence of Zn2+ was analyzed using the online SELCON3 program. An AGXA amino acid sequence similarity search was performed on the BLAST online server to find the most similar protein sequence to use as a template for homology modeling. The pocket volume measurer (POVME) program 3.0 was applied to calculate the active site pocket shape and volume, and molecular dynamics simulations were performed with the Amber14 software package. RESULTS: According to circular dichroism experiments, upon Zn2+ binding, the protein secondary structure changed obviously, with the α-helix content decreasing and ß-sheet, ß-turn and randomcoil content increasing. The structural model of AGXA showed that His217 was near the active site pocket and that Phe178 was at the outer rim of the pocket. Based on the molecular dynamics trajectories, in the free AGXA model, the dihedral angle of C-CA-CB-CG displayed both acute and planar orientations, which corresponded to the open and closed states of the active site pocket, respectively. In the AGXA-Zn model, the dihedral angle of C-CA-CB-CG only showed the planar orientation. As Zn2+ was introduced, the metal center formed a coordination interaction with H217, a cation-π interaction with W244, a coordination interaction with E242 and a cation-π interaction with F178, which prevented F178 from easily rotating to the open state and inhibited the activity of the enzyme. CONCLUSION: This research may have uncovered a subtle mechanism for inhibiting the activity of α-amylase with transition metal ions, and this finding will help to design more potent and specific inhibitors of α-amylases.


Assuntos
Inibidores Enzimáticos/farmacologia , Zinco/farmacologia , alfa-Amilases/antagonistas & inibidores , Anoxybacillus/enzimologia , Domínio Catalítico , Dicroísmo Circular , Inibidores Enzimáticos/metabolismo , Simulação de Dinâmica Molecular , Fenilalanina/química , Ligação Proteica/efeitos dos fármacos , Conformação Proteica em alfa-Hélice/efeitos dos fármacos , Conformação Proteica em Folha beta/efeitos dos fármacos , Zinco/metabolismo , alfa-Amilases/química , alfa-Amilases/isolamento & purificação , alfa-Amilases/metabolismo
13.
Med Chem ; 15(5): 486-495, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30569872

RESUMO

BACKGROUND: The polysialic acid (polySia) is a unique carbohydrate polymer produced on the surface Of Neuronal Cell Adhesion Molecule (NCAM) in a number of cancer cells, and strongly correlates with the migration and invasion of tumor cells and with aggressive, metastatic disease and poor clinical prognosis in the clinic. Its synthesis is catalyzed by two polysialyltransferases (polySTs), ST8SiaIV (PST) and ST8SiaII (STX). Selective inhibition of polySTs, therefore, presents a therapeutic opportunity to inhibit tumor invasion and metastasis due to NCAM polysialylation. Heparin has been found to be effective in inhibiting the ST8Sia IV activity, but no clear molecular rationale. It has been found that polysialyltransferase domain (PSTD) in polyST plays a significant role in influencing polyST activity, and thus it is critical for NCAM polysialylation based on the previous studies. OBJECTIVE: To determine whether the three different types of heparin (unfractionated hepain (UFH), low molecular heparin (LMWH) and heparin tetrasaccharide (DP4)) is bound to the PSTD; and if so, what are the critical residues of the PSTD for these binding complexes? METHODS: Fluorescence quenching analysis, the Circular Dichroism (CD) spectroscopy, and NMR spectroscopy were used to determine and analyze interactions of PSTD-UFH, PSTD-LMWH, and PSTD-DP4. RESULTS: The fluorescence quenching analysis indicates that the PSTD-UFH binding is the strongest and the PSTD-DP4 binding is the weakest among these three types of the binding; the CD spectra showed that mainly the PSTD-heparin interactions caused a reduction in signal intensity but not marked decrease in α-helix content; the NMR data of the PSTD-DP4 and the PSTDLMWH interactions showed that the different types of heparin shared 12 common binding sites at N247, V251, R252, T253, S257, R265, Y267, W268, L269, V273, I275, and K276, which were mainly distributed in the long α-helix of the PSTD and the short 3-residue loop of the C-terminal PSTD. In addition, three residues K246, K250 and A254 were bound to the LMWH, but not to DP4. This suggests that the PSTD-LMWH binding is stronger than the PSTD-DP4 binding, and the LMWH is a more effective inhibitor than DP4. CONCLUSION: The findings in the present study demonstrate that PSTD domain is a potential target of heparin and may provide new insights into the molecular rationale of heparin-inhibiting NCAM polysialylation.


Assuntos
Heparina de Baixo Peso Molecular/metabolismo , Sialiltransferases/antagonistas & inibidores , Sialiltransferases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Dicroísmo Circular , Humanos , Ligação Proteica , Domínios Proteicos , Espectroscopia de Prótons por Ressonância Magnética , Ácidos Siálicos/metabolismo , Sialiltransferases/química , Espectrometria de Fluorescência
14.
Curr Top Med Chem ; 17(21): 2359-2369, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28413949

RESUMO

As a subset of glycosyltransferases, the family of sialyltransferases catalyze transfer of sialic acid (Sia) residues to terminal non-reducing positions on oligosaccharide chains of glycoproteins and glycolipids, utilizing CMP-Neu5Ac as the activated sugar nucleotide donor. In the four known sialyltransferase families (ST3Gal, ST6Gal, ST6GalNAc and ST8Sia), the ST8Sia family catalyzes synthesis of α2, 8-linked sialic/polysialic acid (polySia) chains according to their acceptor specificity. We have determined the 3D structural models of the ST8Sia family members, designated ST8Sia I (1), II(2), IV(4), V(5), and VI(6) using the Phyre2 server. Accuracy of these predicted models are based on the ST8Sia III crystal structure as the calculated template. The common structural features of these models are: (1) Their parallel templates and disulfide bonds are buried within the enzymes and are predominately surrounded by helices; (2) The anti-parallel ß-sheets are located at the N-terminal region of the enzymes; (3) The mono-sialytransferases (mono-STs), ST8Sia I and ST8Sia VI, contain only a single pair of disulfide bonds, and there are no anti-parallel ß-sheets in ST8Sia VI; (4) The Nterminal region of all of the mono-STs are located some distant away from their core structure; (5) These conformational features show that the 3D structures of the mono-STs are less compact than the two polySTs, ST8Sia II and ST8Sia IV, and the oligo-ST, ST8Sia III. These structural features relate to the catalytic specificity of the monoSTs; (6) In contrast, the more compact structural features of ST8Sia II, ST8Sia IV and ST8Sia III relate to their ability to catalyze the processive synthesis of oligo- (ST8Sia III) and polySia chains (ST8Sia II & ST8Sia IV); (7) Although ST8Sia II, III and IV have similar conformations in their corresponding polysialyltransferase domain (PSTD) and polybasic region (PBR) motifs, the structure of ST8Sia III is less compact than ST8Sia II and ST8Sia IV, and the amino acid components of the several three-residue-loops in the two motifs of ST8Sia III are different from that in ST8Sia II and ST8Sia IV. This is likely the structural basis for why ST8Sia III is an oligoST and not able to polysialylate and; (8) In contrast, essentially all amino acids within the threeresidue- loops in the PSTD of ST8Sia II and ST8Sia IV are highly conserved, and many amino acids in the loops and the helices of these two motifs are critical for NCAM polysialylation, as determined by mutational analysis and confirmed by our recent NMR results. In summary, these new findings provide further insights into the molecular mechanisms underlying polyST-NCAM recognition, polySTpolySia/ oligoSia interactions, and polysialylation of NCAM.


Assuntos
Sialiltransferases/química , Sialiltransferases/metabolismo , Animais , Bactérias/enzimologia , Humanos , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade
15.
Bioresour Technol ; 211: 307-12, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27023386

RESUMO

Duckweed is potentially an ideal succinic acid (SA) feedstock due to its high proportion of starch and low lignin content. Pretreatment methods, substrate content and nitrogen source were investigated to enhance the bioconversion of duckweed to SA and to reduce the costs of production. Results showed that acid hydrolysis was an effective pretreatment method because of its high SA yield. The optimum substrate concentration was 140g/L. The optimum substrate concentration was 140g/L. Corn steep liquor powder could be considered a feasible and inexpensive alternative to yeast extract as a nitrogen source. Approximately 57.85g/L of SA was produced when batch fermentation was conducted in a 1.3L stirred bioreactor. Therefore, inexpensive duckweed can be a promising feedstock for the economical and efficient production of SA through fermentation by Actinobacillus succinogenes GXAS137.


Assuntos
Actinobacillus/metabolismo , Araceae , Reatores Biológicos/microbiologia , Ácido Succínico , Araceae/química , Araceae/metabolismo , Fermentação , Hidrólise , Nitrogênio/metabolismo , Ácido Succínico/análise , Ácido Succínico/metabolismo , Zea mays
16.
Curr Top Med Chem ; 16(6): 581-90, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26286215

RESUMO

All residues in an alpha helix can be characterized and dispositioned on a 2D the wenxiang diagram, which possesses the following features: (1) the relative locations of the amino acids in the α-helix can be clearly displayed regardless how long it is; (2) direction of an alphahelix can be indicated; and (3) more information regarding each of the constituent amino acid residues in an alpha helix. Owing to its intuitionism and easy visibility, wenxiang diagrams have had an immense influence on our understanding of protein structure, protein-protein interactions, and the effect of helical structural stability on protein conformational transitions. In this review, we summarize two recent applications of wenxiang diagrams incorporating NMR spectroscopy in the researches of the coiled-coil protein interactions related to the regulation of contraction or relaxation states of vascular smooth muscle cells, and the effects of α-helical stability on the protein misfolding in prion disease, in hopes that the gained valuable information through these studies can stimulate more and more widely applications of wenxiang diagrams in structural biology.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Aminoácidos/química , Aminoácidos/metabolismo , Animais , Humanos , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas/metabolismo
17.
Biotechnol Appl Biochem ; 61(2): 93-100, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24033784

RESUMO

Simultaneous improvements of thermostability and activity of a Ca-independent α-amylase from Bacillus subtilis CN7 were achieved by C-terminal truncation and his6-tag fusion. C-terminal truncation, which eliminates C-terminal 194-amino-acid residues from the intact mature α-amylase, raised the turnover number by 35% and increased the thermostability in terms of half-life at 65 °C by threefold. A his6-tag fusion at either the C- or N-terminus of truncated α-amylase further enhanced its turnover number by 59% and 37%, respectively. Molecular modeling revealed that these improvements could be attributed to structural rearrangement and reorientation of the catalytic residues.


Assuntos
Aminoácidos/química , Estabilidade Enzimática , Histidina/química , Oligopeptídeos/química , alfa-Amilases/química , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Domínio Catalítico , Histidina/metabolismo , Modelos Moleculares , Oligopeptídeos/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Temperatura , alfa-Amilases/genética , alfa-Amilases/metabolismo
18.
Curr Top Med Chem ; 13(10): 1141-51, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23647537

RESUMO

In drug design and enzyme engineering, the information of interactions between receptors and ligands is crucially important. In many cases, the protein structures and drug-target complex structures are determined by a delicate balance of several weak molecular interaction types. Among these interaction forces several unconventional interactions play important roles, however, less familiar for researchers. The cation-π interaction is a unique noncovalent interaction only acting between aromatic amino acids and organic cations (protonated amino acids) and inorganic cations (proton and metallic). This article reports new study results in the interaction strength, the behaviors and the structural characters of cation-π interactions between aromatic amino acids (Phe, Tyr, and Trp) and organic and inorganic cations (Lys(+), Arg(+), H(+), H3O(+), Li(+), Na(+), K(+), Ca(2+), and Zn(2+)) in gas phase and in solutions (water, acetonitrile, and cyclohexane). Systematical research revealed that the cation-π interactions are point-to-plane (aromatic group) interactions, distance and orientationdependent, and the interaction energies change in a broad range. In gas phase the cation-π interaction energies between aromatic amino acids (Phe, Tyr, and Trp) and metallic cations (Li(+), Na(+), K(+), Ca(2+), and Zn(2+)) are in the range -12 to -160 kcal/mol, and the interaction energies of protonated amino acids (Arg(+) and Lys(+)) are in the range from -9 to -18 kcal/mol. In solutions the cation-π energies decrease with the dielectric constant ε of solvents. However, in aqueous solution the cation-π energies of H3O(+) and protonated amino acids are less affected by solvation effects. The applications of unconventional interaction forces in drug design and in protein engineering are introduced.


Assuntos
Desenho de Fármacos , Proteínas/química , Proteínas/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Cátions/química , Cátions/metabolismo , Ligantes , Engenharia de Proteínas , Teoria Quântica
19.
Chem Cent J ; 7(1): 44, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23452343

RESUMO

BACKGROUND: Among the 20 natural amino acids histidine is the most active and versatile member that plays the multiple roles in protein interactions, often the key residue in enzyme catalytic reactions. A theoretical and comprehensive study on the structural features and interaction properties of histidine is certainly helpful. RESULTS: Four interaction types of histidine are quantitatively calculated, including: (1) Cation-π interactions, in which the histidine acts as the aromatic π-motif in neutral form (His), or plays the cation role in protonated form (His+); (2) π-π stacking interactions between histidine and other aromatic amino acids; (3) Hydrogen-π interactions between histidine and other aromatic amino acids; (4) Coordinate interactions between histidine and metallic cations. The energies of π-π stacking interactions and hydrogen-π interactions are calculated using CCSD/6-31+G(d,p). The energies of cation-π interactions and coordinate interactions are calculated using B3LYP/6-31+G(d,p) method and adjusted by empirical method for dispersion energy. CONCLUSIONS: The coordinate interactions between histidine and metallic cations are the strongest one acting in broad range, followed by the cation-π, hydrogen-π, and π-π stacking interactions. When the histidine is in neutral form, the cation-π interactions are attractive; when it is protonated (His+), the interactions turn to repulsive. The two protonation forms (and pKa values) of histidine are reversibly switched by the attractive and repulsive cation-π interactions. In proteins the π-π stacking interaction between neutral histidine and aromatic amino acids (Phe, Tyr, Trp) are in the range from -3.0 to -4.0 kcal/mol, significantly larger than the van der Waals energies.

20.
Sheng Wu Gong Cheng Xue Bao ; 29(10): 1473-83, 2013 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-24432662

RESUMO

Succinic acid is an important C4 platform chemical in the synthesis of many commodity and special chemicals. In the present work, different compounds were evaluated for succinic acid production by Actinobacillus succinogenes GXAS 137. Important parameters were screened by the single factor experiment and Plackeet-Burman design. Subsequently, the highest production of succinic acid was approached by the path of steepest ascent. Then, the optimum values of the parameters were obtained by Box-Behnken design. The results show that the important parameters were glucose, yeast extract and MgCO3 concentrations. The optimum condition was as follows (g/L): glucose 70.00, yeast extract 9.20 and MgCO3 58.10. Succinic acid yield reached 47.64 g/L at the optimal condition. Succinic acid increased by 29.14% than that before the optimization (36.89 g/L). Response surface methodology was proven to be a powerful tool to optimize succinic acid production.


Assuntos
Actinobacillus/metabolismo , Fermentação , Ácido Succínico/metabolismo , Actinobacillus/classificação , Actinobacillus/genética , Reatores Biológicos , Meios de Cultura/metabolismo , Glucose/metabolismo , Microbiologia Industrial/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA