Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37443661

RESUMO

Accumulative evidence suggests metabolic disorders correlate with prostate cancer. Metabolic profiling of urine allows the measurement of numerous metabolites simultaneously. This study set up a metabolomic platform consisting of UPLC-FTMS and UPLC-ion trap MSn for urine metabolome analysis. The platform improved retention time, mass accuracy, and signal stability. Additionally, the product ion spectrum obtained from ion trap MSn facilitated structure elucidation of candidate metabolites, especially when authentic standards were not available. Urine samples from six hernia patients and six BPH patients were used for the initial establishment of the analytic platform. This platform was further employed to analyze the urine samples of 27 PCa and 49 BPH patients. Choosing the upper and lower 16% of metabolites, 258 metabolite candidates were selected. Twenty-four of them with AUC values larger than 0.65 were further selected. Eighteen of the twenty-four features can be matched in METLIN and HMDB. Eleven of the eighteen features can be interpreted by MSn experiments. They were used for the combination achieving the best differential power. Finally, four metabolites were combined to reach the AUC value of 0.842 (CI 95, 0.7559 to 0.9279). This study demonstrates the urinary metabolomic analysis of prostate cancer and sheds light on future research.

2.
Nat Commun ; 8(1): 299, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28824166

RESUMO

The C-type lectin member 5A (CLEC5A) is a pattern recognition receptor for members of the Flavivirus family and has critical functions in response to dengue virus and Japanese encephalitis virus. Here we show that CLEC5A is involved in neutrophil extracellular trap formation and the production of reactive oxygen species and proinflammatory cytokines in response to Listeria monocytogenes. Inoculation of Clec5a -/- mice with L. monocytogenes causes rapid bacterial spreading, increased bacterial loads in the blood and liver, and severe liver necrosis. In these mice, IL-1ß, IL-17A, and TNF expression is inhibited, CCL2 is induced, and large numbers of CD11b+Ly6ChiCCR2hiCX3CR1low inflammatory monocytes infiltrate the liver. By day 5 of infection, these mice also have fewer IL-17A+ γδ T cells, severe liver necrosis and a higher chance of fatality. Thus, CLEC5A has a pivotal function in the activation of multiple aspects of innate immunity against bacterial invasion.The lectin receptor CLEC5A is a pattern recognition receptor that has been shown to detect dengue and Japanese encephalitis virus. Here the authors show that CLEC5A is needed for optimal ROS production, NET formation and other immune responses to Listeria monocytogenes in mice.


Assuntos
Imunidade Inata/imunologia , Lectinas Tipo C/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Receptores de Superfície Celular/imunologia , Animais , Citocinas/imunologia , Citocinas/metabolismo , Armadilhas Extracelulares/genética , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Listeria monocytogenes/fisiologia , Listeriose/genética , Listeriose/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA