RESUMO
PURPOSE: Myopia has emerged as a significant public health concern. Recent studies have demonstrated that Orthokeratology (Ortho-K) can effectively decelerate axial length (AL) growth, with eyes possessing smaller back optical zone diameters (BOZD) exhibiting greater effectiveness compared to those with larger BOZD. This study aims to analyze the impact of Ortho-K with varying BOZD. METHOD: This systematic review involved the retrieval of articles from eight databases: PubMed, Embase, Web of Science, Cochrane, CNKI, Wanfang, Sinomed, and VIP, covering the period from each database's inception to January 2024. It compared axial length (AL) changes between smaller and larger back optic zone diameters (BOZD). Review Manager 5.4 was used to statistical analysis and the results presented as weighted mean differences and 95% confidence intervals (CI). This review adheres to the PRISMA guidelines. RESULT: This systematic review included two randomized controlled trials (RCTs) and five cohort studies (CS), analyzing a total of 702 eyes (352 eyes are treated with Ortho-K and BOZD ≤ 5.5 mm, 350 eyes are treated with Ortho-K and BOZD ≥ 6.0 mm). The findings indicate that the Ortho-K with smaller BOZD significantly reduces AL growth [WMD = -0.13, 95 %CI (-0.16 to -0.10), P < 0.001]. CONCLUSION: The Ortho-K with smaller BOZD prove more effective in controlling myopic AL growth compared with larger BOZD. However, in clinical practice, it is necessary to comprehensively evaluating factors such as patient age, myopia diopter, pupil diameter, higher-order aberration, treatment zone area, and corneal eccentricity to achieve optimized outcomes in improving naked-eye vision and myopia controlling.
RESUMO
A new type of carbon dots (D-NCCDs) was synthesized by 3, 5-diaminobenzoic acid, N,N-dimethyl-o-phenylenediamine, and D-cysteine. The morphology and structure of D-NCCDs were investigated by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and FT-IR spectra, and the chirality was characterized by circular dichroism. In the presence of hydrogen peroxide, the fluorescence of D-NCCDs at 487 nm (λex = 410 nm) showed great discrimination ability towards glutamine enantiomers. The ratio of fluorescence intensity (F/F0) to the concentration of D-Gln showed good linearity in the range 0.5-10 mM, with a detection limits of 0.11 mM. Meanwhile, the color of the solution gradually changed from light yellow to yellow-brown. The UV-Vis absorption ratio (A/A0) at 410 nm showed good linearity with the concentration of D-Gln in the range 0.5 to 20 mM; the detection limit is 7.7 µM. But the fluorescence and absorbance of D-NCCDs showed no significant change after the addition of L-glutamine. Thus, fluorescence and colorimetry dual-mode discrimination of glutamine enantiomers was achieved. The fluorescence enantioselectivity of Gln (FL-Gln/FD-Gln) is 1.62, and the colorimetric enantioselectivity of Gln (AD-Gln/AL-Gln) is 2.14. The chiral discrimination mechanism of D-NCCDs to Gln enantiomers was also investigated systematically. This work not only can discriminate glutamine enantiomers with high sensitivity and convenience, but also offers a new strategy for preparing new dual mode chiral nanoprobes.
Assuntos
Colorimetria , Glutamina , Espectrometria de Fluorescência , Glutamina/química , Glutamina/análise , Estereoisomerismo , Espectrometria de Fluorescência/métodos , Colorimetria/métodos , Carbono/química , Pontos Quânticos/química , Limite de Detecção , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Fenilenodiaminas/química , Cisteína/análise , Cisteína/químicaRESUMO
To overcome the disadvantages of poor intrinsic conductivity and stability of ZnCo2O4, a ZnCo2O4@MnMoO4 composite as an emerging pseudocapacitor electrode material with high specific capacitance, environmental friendliness, morphological diversity, and unique hierarchical structure was synthesized via a simple two-step hydrothermal method. The research results indicate that the ZnCo2O4@MnMoO4 composite can present a high specific capacity of 1628 F g-1 at a current density of 1 A g-1 and good cycling stability with 69% capacity retention after 10 000 cycles at 10 A g-1. Hybrid supercapacitors (HSCs) assembled with the ZnCo2O4@MnMoO4 cathode and activated carbon anode can deliver an energy density of 48 W h kg-1 at a power density of 695 W kg-1, and their capacity retention reached 61% after 8000 charge-discharge cycles at a current density of 10 A g-1. This could be attributed to the synergistic effect of the specific surface area and electrical conductivity enhanced by compositing ZnCo2O4 with MnMoO4. As a result, the excellent electrochemical properties show that the ZnCo2O4@MnMoO4 composite has strong application potential for high-performance supercapacitors.
RESUMO
Acute pancreatitis, a common exocrine inflammatory disease affecting the pancreas, is characterized by intense abdominal pain and multiple organ dysfunction. However, the alterations in retinal blood vessels among individuals with acute pancreatitis remain poorly understood. This study employed optical coherence tomography angiography (OCTA) to examine the superficial and deep retinal blood vessels in patients with pancreatitis. Sixteen patients diagnosed with pancreatitis (32 eyes) and 16 healthy controls (32 eyes) were recruited from the First Affiliated Hospital of Nanchang University for participation in the study. Various ophthalmic parameters, such as visual acuity, intraocular pressure, and OCTA image for retina consisting of the superficial retinal layer (SRL) and the deep retinal layer (DRL), were recorded for each eye. The study observed the superficial and deep retinal microvascular ring (MIR), macrovascular ring (MAR), and total microvessels (TMI) were observed. Changes in retinal vascular density in the macula through annular partitioning (C1-C6), hemispheric quadrant partitioning (SR, SL, IL, and IR), and early diabetic retinopathy treatment studies (ETDRS) partitioning methods (R, S, L, and I). Correlation analysis was employed to investigate the relationship between retinal capillary density and clinical indicators. Our study revealed that in the superficial retinal layer, the vascular density of TMI, MIR, MAR, SR, IR, S, C2, C3 regions were significantly decreased in patients group compared with the normal group. For the deep retinal layer, the vascular density of MIR, SR, S, C1, C2 regions also reduced in patient group. The ROC analysis demonstrated that OCTA possesses significant diagnostic performance for pancreatitis. In conclusion, patients with pancreatitis may have retinal microvascular dysfunction, and OCTA can be a valuable tool for detecting alterations in ocular microcirculation in pancreatitis patients in clinical practice.
Assuntos
Pancreatite , Vasos Retinianos , Tomografia de Coerência Óptica , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos de Casos e Controles , Relevância Clínica , Microvasos/diagnóstico por imagem , Microvasos/patologia , Microvasos/fisiopatologia , Pancreatite/complicações , Pancreatite/patologia , Pancreatite/fisiopatologia , Vasos Retinianos/diagnóstico por imagem , Vasos Retinianos/patologia , Tomografia de Coerência Óptica/métodos , Acuidade VisualRESUMO
BACKGROUND: Amputation of the wrist or distal forearm after high-energy trauma due to a crushing mechanism is associated with complex tissue defects, making repair, and reconstruction challenging. Given the difficulty of this type of salvage, patients unfortunately experience a high revision amputation rate. However, a higher quality of life has been reported in patients with successful reconstructions. Herein, we described a protocolized approach for revascularization and reconstruction for functional hand salvage after traumatic amputation from a crushing mechanism using an anterolateral thigh flap (ALT). METHODS: A retrospective review was performed between October 2016 and October 2023 for all patients who underwent single-stage emergent debridement, revascularization, and soft tissue coverage using the ALT after amputation at the level of the wrist or distal forearm secondary to high-energy crush injury. Charts were reviewed for the preoperative Mangled Extremity Salvage Score, intraoperative details including what structures were injured and the reconstructive method performed, and postoperative data such as follow-up duration, outcomes, and complications. RESULTS: Eleven patients met the inclusion criteria with an average age of 35.5 (21-49) years old. The average size of the skin soft tissue defects was 17.3 × 8 cm (range, length: 13-25 cm, width: 6-13 cm), and all cases had associated injury to the underlying bone, nerves, and blood vessels. The average size of the ALT flap used for reconstruction was 19.2 × 9.8 cm (range, length: 14-27 cm, width: 7-15 cm). All patients had survival of the replanted limb. One patient experienced partial flap necrosis that required secondary debridement and skin graft. Nine patients healed without requiring any additional debridement procedures. Patient follow-up averaged 24.6 (12-38) months. All patients achieved satisfactory functional recovery with Grade II to III of Chen's criteria. CONCLUSIONS: For patients with traumatic crush amputation to the wrist with surrounding soft tissue injury, thorough debridement, revascularization, and reconstruction of amputated limbs can be performed in a single stage using the ALT. A protocolized approach from two institutions is presented, demonstrating improved survival and reduced complications of the traumatized limb with improved long-term patient outcomes.
Assuntos
Amputação Traumática , Lesões por Esmagamento , Traumatismos do Antebraço , Procedimentos de Cirurgia Plástica , Traumatismos do Punho , Humanos , Estudos Retrospectivos , Adulto , Masculino , Pessoa de Meia-Idade , Traumatismos do Antebraço/cirurgia , Procedimentos de Cirurgia Plástica/métodos , Lesões por Esmagamento/cirurgia , Feminino , Traumatismos do Punho/cirurgia , Amputação Traumática/cirurgia , Adulto Jovem , Salvamento de Membro/métodos , Protocolos Clínicos , Retalhos de Tecido Biológico/transplante , Retalhos de Tecido Biológico/irrigação sanguínea , Retalhos Cirúrgicos/irrigação sanguínea , Retalhos Cirúrgicos/transplante , Resultado do Tratamento , Desbridamento/métodosRESUMO
Clinical treatment of diabetic refractory ulcers is impeded by chronic inflammation and cell dysfunction associated with wound healing. The significant clinical application of bFGF in wound healing is limited by its instability in vivo. Sulfur has been applied for the treatment of skin diseases in the clinic for antibiosis. We previously found that sulfur incorporation improves the ability of selenium nanoparticles to accelerate wound healing, yet the toxicity of selenium still poses a risk for its clinical application. To obtain materials with high pro-regeneration activity and low toxicity, we explored the mechanism by which selenium-sulfur nanoparticles aid in wound healing via RNA-Seq and designed a nanoparticle called Nano-S@bFGF, which was constructed from sulfur and bFGF. As expected, Nano-S@bFGF not only regenerated zebrafish tail fins and promoted skin wound healing but also promoted skin repair in diabetic mice with a profitable safety profile. Mechanistically, Nano-S@bFGF successfully coactivated the FGFR and Hippo signalling pathways to regulate wound healing. Briefly, the Nano-S@bFGF reported here provides an efficient and feasible method for the synthesis of bioactive nanosulfur and bFGF. In the long term, our results reinvigorated efforts to discover more peculiar unique biofunctions of sulfur and bFGF in a great variety of human diseases.
RESUMO
New chiral carbon dots (CDs), L-PCDs, for discriminating tryptophan (Trp) enantiomers were prepared in this work. Firstly, original CDs were synthesized through a hydrothermal method using pyridine-2,6-dicarboxylic acid and o-phenylenediamine as raw materials. Then, the surface of original CDs was modified with L-phenylalanine to create chiral fluorescent carbon L-PCDs. In the presence of D-Trp, the fluorescence intensity of L-PCDs decreased significantly while it remained unchanged in the presence of L-Trp. The chiral sensing system used in this study has a rapid response time of 3 minutes and can identify enantiomers with an enantioselectivity (ID/IL) of up to 3.3. For D-Trp, a good linear relationship can be obtained in the range of 0.3-4.2 mM with a limit of detection of 0.06 mM. This sensor allows for both quantitative detection of D-Trp and determination of enantiomeric percentage in the racemate. The chiral recognition mechanism is attributed to the different interaction between D-/L-Trp and L-PCDs.
RESUMO
Biomarker screening is critical for precision oncology. However, one of the main challenges in precision oncology is that the screened biomarkers often fail to achieve the expected clinical effects and are rarely approved by regulatory authorities. Considering the close association between cancer pathogenesis and the evolutionary events of organisms, we first explored the evolutionary feature underlying clinically approved biomarkers, and two evolutionary features of approved biomarkers (Ohnologs and specific evolutionary stages of genes) were identified. Subsequently, we utilized evolutionary features for screening potential prognostic biomarkers in four common cancers: head and neck squamous cell carcinoma, liver hepatocellular carcinoma, lung adenocarcinoma, and lung squamous cell carcinoma. Finally, we constructed an evolution-strengthened prognostic model (ESPM) for cancers. These models can predict cancer patients' survival time across different cancer cohorts effectively and perform better than conventional models. In summary, our study highlights the application potentials of evolutionary information in precision oncology biomarker screening.
RESUMO
PURPOSE: To evaluate and compare the effect of decentration and tilt on the optical quality of monofocal and trifocal intraocular lenses (IOL). METHODS: Optical quality of a monofocal IOL (AcrySof IQ SN60WF; Alcon Laboratories, Inc., USA) and a trifocal IOL (AcrySof IQ PanOptix; Alcon Laboratories, Inc., USA) was assessed using an in vitro optical bench (OptiSpheric IOL R&D; Trioptics GmbH, Germany). At apertures of 3.0 mm and 4.5 mm, modulation transfer function (MTF) at spatial frequency of 50 lp/mm, MTF curve and the United States Air Force (USAF) resolution test chart of the two IOLs were measured and compared at their focus with different degrees of decentration and tilt. Optical quality at infinity, 60 cm and 40 cm and the through-focus MTF curves were compared when the two IOLs were centered at apertures of 3.0 mm and 4.5 mm. Spectral transmittance of the two IOLs was measured by the UV-visible spectrophotometer (UV 3300 PC; MAPADA, China). RESULTS: The SN60WF and the PanOptix filtered blue light from 400 to 500 nm. Both IOLs at the far focus and the PanOptix at the intermediate focus showed a decrease in optical quality with increasing decentration and tilt. The PanOptix demonstrated enhanced optical quality compared to the previous gradient at the near focus at a decentration range of 0.3-0.7 mm with a 3.0 mm aperture, and 0.5 mm with a 4.5 mm aperture, whereas other conditions exhibited diminished optical quality with increasing decentration and tilt at the focus of both IOLs. When the two IOLs were centered, the SN60WF had better optical quality at infinity, while the PanOptix had better optical quality at 60 cm and 40 cm defocus. The optical quality of the SN60WF exceeded that of the PanOptix at far focus, with a 3 mm aperture decentration up to 0.7 mm and a 4.5 mm aperture decentration up to 0.3 mm; this observation held true for all tilts, irrespective of aperture size. As both decentration and tilt increased, the optical quality of the SN60WF deteriorated more rapidly than that of the PanOptix at the far focal point. CONCLUSIONS: The SN60WF showed a decrease in optical quality with increasing decentration and tilt. Optical quality of the PanOptix at the near focus increased in some decentration conditions and decreased in some conditions, while it showed a decrease at the other focuses with increasing decentration. While tilt only had a negative effect on optical quality. When both IOLs were centered, the PanOptix provided a wider range of vision, while the SN60WF provided better far distance vision. At the far focus, the SN60WF has better resistance to tilt than the PanOptix, but the optical quality degrades more quickly when decentered and tilted.
Assuntos
Migração do Implante de Lente Intraocular , Lentes Intraoculares , Óptica e Fotônica , Desenho de Prótese , Refração Ocular , Humanos , Migração do Implante de Lente Intraocular/fisiopatologia , Refração Ocular/fisiologia , Lentes Intraoculares Multifocais , Acuidade Visual/fisiologiaRESUMO
The development of an electrochemical energy storage system with exceptional performance is an important way to address the energy crisis and environmental pollution of the modem world. In this study, an NiCo2O4@MnS composite with a unique hierarchical structure has been successfully synthesized on an NF substrate using the hydrothermal-electrodeposition method. The results indicate that NiCo2O4@MnS possesses superior specific capacitance and excellent cycling stability. At a current density of 2 A g-1, its specific capacitance can reach 2100 F g-1, while the capacitance retention is still 76% after 10 000 cycles at 10 A g-1. Moreover, when the current density is 1 A g-1, the assembled NiCo2O4@MnS//AC device can deliver a specific capacitance of 203 F g-1, and the energy density is up to 55 W h kg-1 at a power density of 697 W kg-1. These outstanding electrochemical properties of NiCo2O4@MnS can be ascribed to the increase in ion diffusion, specific surface area and electronic conductivity due to its unique hierarchical structure and introduction of MnS.
RESUMO
OBJECTIVE: To evaluate the accuracy of 10 formulas for calculating intraocular lens (IOL) power in cataract eye with an axial length (AL) of more than 28.0 mm. METHODS: We searched scientific databases including PubMed, EMBASE, Web of Science and Cochrane Library for research published over the past 5 years, up to Sept 2023. The inclusion criteria were case series studies that compared different formulas (Barrett II, EVO, Kane, Hill-RBF, Haigis, Hoffer Q, Holladay 1, SRK/T, Holladay 1 w-k and SRK/T w-k), in patients with extremely long AL undergoing uncomplicated cataract surgery with IOL implantation. The mean difference (MD) of mean absolute error (MAE) and the odds ratio (OR) of both the percentage of eyes within ±0.50D of prediction error (PPE±0.50D) and the percentage of eyes within ±1.00D of prediction error (PPE±1.00D) among different formulas were pooled using meta-analysis. RESULTS: A total of 11 studies, involving 1376 eyes, were included to evaluate the 10 formulas mentioned above. Among these formulas, Barrett II, EVO, Kane, and Hill-RBF demonstrated significantly lower MAE values compared to SRK/T. Furthermore, Kane and Hill-RBF had lower MAE values than EVO. Additionally, Barrett II and Kane yielded significantly lower MAE values than Haigis while Hill-RBF showed significantly lower MAE values than Holladay 1. Moreover, Hill-RBF showed the highest values for both PPE±0.50D and PPE±1.00D, followed by Kane. Both EVO and Kane had higher values of PPE±0.50D and PPE±1.00D compared to Haigis and SRK/T. CONCLUSION: The Wang-Koch adjusted formulas and new-generation formulas have shown potential for higher accuracy in predicting IOL power for cataract patients with extremely long AL compared to traditional formulas. Based on the current limited clinical studies, Hill-RBF and Kane formulas seem to be a better choice for eyes with extremely long AL.
Assuntos
Extração de Catarata , Catarata , Lentes Intraoculares , Humanos , Olho , Bases de Dados FactuaisRESUMO
Discrimination and quantification of amino acid (AA) enantiomers are particularly important for diagnosing and treating diseases. Recently, dual-mode probes have gained a lot of research interest because they can catch more detecting information compared with the single-mode probes. Thus, it is of great significance to develop a dual-mode sensor realizing AA enantiomer discrimination conveniently and efficiently. In this work, carbon dot L-TCDs were prepared by N-methyl-1,2-benzenediamine dihydrochloride (OTD) and l-tryptophan. With the assistance of H2O2, L-TCDs show an excellent discrimination performance for enantiomers of glutamine (Gln) and valine (Val) in both fluorescent and colorimetric modes. The fluorescence enantioselectivity of Gln (FD/FL) and Val (FL/FD) is 5.29 and 4.13, respectively, and the colorimetric enantioselectivity of Gln (ID/IL) and Val (IL/ID) is 13.26 and 3.42, individually. The chiral recognition mechanism of L-TCDs was systematically studied. L-TCDs can be etched by H2O2, and the participation of AA enantiomers results in different amounts of the released OTD, which provides fluorescent and colorimetric signals for identifying and quantifying the enantiomers of Gln and Val. This work provides a more convenient and flexible dual-mode sensing strategy for discriminating AA enantiomers, which is expected to be of great value in facile and high-throughput chiral recognition.
Assuntos
Glutamina , Valina , Colorimetria/métodos , Carbono/química , Peróxido de Hidrogênio , Aminoácidos , CorantesRESUMO
Background: Angiogenesis is crucial in diabetic wound healing and is often impaired in diabetic foot ulcers (DFUs). Human dermal microvascular endothelial cells (HDMECs) are vital components in dermal angiogenesis; however, their functional and transcriptomic characteristics in DFU patients are not well understood. This study aimed to comprehensively analyse HDMECs from DFU patients and healthy controls and find the potential regulator of angiogenesis in DFUs. Methods: HDMECs were isolated from skin specimens of DFU patients and healthy controls via magnetic-activated cell sorting. The proliferation, migration and tube-formation abilities of the cells were then compared between the experimental groups. Both bulk RNA sequencing (bulk-seq) and single-cell RNA-seq (scRNA-seq) were used to identify RAB17 as a potential marker of angiogenesis, which was further confirmed via weighted gene co-expression network analysis (WGCNA) and least absolute shrink and selection operator (LASSO) regression. The role of RAB17 in angiogenesis was examined through in vitro and in vivo experiments. Results: The isolated HDMECs displayed typical markers of endothelial cells. HDMECs isolated from DFU patients showed considerably impaired tube formation, rather than proliferation or migration, compared to those from healthy controls. Gene set enrichment analysis (GSEA), fGSEA, and gene set variation analysis (GSVA) of bulk-seq and scRNA-seq indicated that angiogenesis was downregulated in DFU-HDMECs. LASSO regression identified two genes, RAB17 and CD200, as characteristic of DFU-HDMECs; additionally, the expression of RAB17 was found to be significantly reduced in DFU-HDMECs compared to that in the HDMECs of healthy controls. Overexpression of RAB17 was found to enhance angiogenesis, the expression of hypoxia inducible factor-1α and vascular endothelial growth factor A, and diabetic wound healing, partially through the mitogen-activated protein kinase/extracellular signal-regulated kinase signalling pathway. Conclusions: Our findings suggest that the impaired angiogenic capacity in DFUs may be related to the dysregulated expression of RAB17 in HDMECs. The identification of RAB17 as a potential molecular target provides a potential avenue for the treatment of impaired angiogenesis in DFUs.
RESUMO
PURPOSE: To investigate the effect of the optional biometric parameters lens thickness (LT) and center corneal thickness (CCT) in the Kane formula on intraocular lens (IOL) power calculation. METHODS: A cross-sectional study included consecutive cataract patients who received uncomplicated cataract surgery with IOL implantation from May to September 2022 were enrolled. The ocular biometric parameters were obtained using IOLMaster 700 and then inputted into online Kane formula calculator. The IOL power was calculated for targeting emmetropia and compared between groups: not omitting (NO) group, omitting LT and CCT (OLC) group, omitting LT (OL) group and omitting CCT (OC) group. Further, according to the axial length (AL), anterior chamber depth (ACD), and mean keratometry (Km), the eyes were divided into three subgroups, respectively. RESULTS: 1005 eyes of 1005 consecutive patients were included. There was no significant difference in IOL power between NO group and OC group (P = 0.064), and the median absolute difference (MedAD) was 0.05D. The IOL power in NO group showed significant differences from OLC group and OL group respectively (P < 0.001), and both MedAD values were 0.18D. Among AL subgroups, MedAD ranged from 0.06D to 0.35D in short eyes. Among ACD subgroups, the above values ranged from 0.06D to 0.23D in shallow ACD subgroup. Among Km subgroups, these values ranged from 0.05D to 0.31D in steep Km subgroup. CONCLUSION: The optional biometric parameter CCT has no effect on the calculation results of the Kane formula, whereas the parameter LT has a great influence on the Kane formula results for the IOL power calculation in cataract patients with short AL, shallow ACD and steep Km.
Assuntos
Catarata , Lentes Intraoculares , Humanos , Estudos Transversais , Olho , BiometriaRESUMO
As a promising supercapacitor electrode material, NiMn-LDH has attracted great attention due to its high theoretical capacity and easy preparation. However, the development and application of NiMn-LDH in supercapacitors are limited because of its poor cycling stability and low electrical conductivity. To solve these problems, a NiMnMg-LDH with a three-dimensional porous morphology has been successfully fabricated by doping with Mg to improve its electrochemical properties. Experimental results indicate that NiMnMg-LDH-7 delivers a specific capacitance of 1772 F g-1 at a current density of 1 A g-1. Moreover, it can still reach 1080 F g-1 when the current density is increased 10 times, suggesting excellent rate capability. The asymmetric supercapacitor (ASC) NiMnMg-LDH-7//AC can provide a high energy density of 28 W h kg-1 at a power density of 700 W kg-1. Furthermore, the energy density can still reach 16 W h kg-1 even if the power density is increased to close to 3500 W kg-1. The capacity retention of this ASC device can reach 74% after 3000 cycles at a current density of 3 A g-1. These excellent properties of NiMnMg-LDH can be attributed to the obvious improvement of its specific surface area and electrical conductivity owing to doping with the element magnesium. We believe that this work could provide a new idea for the preparation of high-performance electrode materials for supercapacitors.
RESUMO
Purpose: To identify the expression of the mechanosensitive ion channel Piezo1 in the retina of guinea pigs with form deprivation myopia (FDM) and to investigate mechanisms by which Piezo1 channels might regulate myopia. Method: Sixty 3-week-old guinea pigs were divided into four groups randomly: normal control, FDM, FDM + vehicle control (DMSO), and FDM + Piezo1 inhibitor (GsMTx4). Measurements of spherical equivalent (SE) and axial length (AL) of the guinea pig were taken using retinoscopy and A-scan ultrasound examination, respectively. Location of Piezo1 protein was determined using immunohistochemistry. The histological structure and thickness changes of the guinea pig retina were observed by hematoxylin and eosin. Expression of Piezo1 in the retina was detected using quantitative RT-PCR and Western blot. Reactive oxygen species (ROS) levels in the retina were measured using flow cytometry. Result: After 4 weeks of form deprivation, the FDM group exhibited a significantly increased myopic degree and axial length compared with the normal control group (all P < 0.001), and had higher expression levels of Piezo1 and ROS than the normal control group (P < 0.001 and P = 0.002, respectively). Piezo1 protein expression was down-regulated in guinea pigs given GsMTx4 compared with the DMSO group (P = 0.037). Additionally, the GsMTx4 group showed lower myopic degree (P < 0.001) and lower ROS levels (P = 0.019) compared with the DMSO group. Conclusions: The Piezo1 channel may be activated in the retinas of FDM guinea pigs and be involved in the development of myopia by regulating intraocular ROS levels.
Assuntos
Dimetil Sulfóxido , Miopia , Animais , Cobaias , Dimetil Sulfóxido/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Miopia/patologia , Retina/metabolismo , Refração Ocular , Modelos Animais de DoençasRESUMO
AIM: To investigate the effect of all-trans retinoic acid (ATRA) on retinol dehydrogenase 5 (RDH5), matrix metalloproteinase-2 (MMP-2) and transforming growth factor-ß2 (TGF-ß2) transcription levels, and the effect of RDH5 on MMP-2 and TGF-ß2 in retinal pigment epithelium (RPE) cells. METHODS: After adult RPE cell line-19 (ARPE-19 cells) intervened with gradient concentrations of ATRA (0-20 µmol/L) for 24h, flow cytometry was used to detect the proliferation and apoptosis of cells in each group, and quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect RDH5, MMP-2 and TGF-ß2 mRNA expression. Then, after ARPE-19 cells transfected with three different siRNA targets for 48h, the RDH5 knockdown efficiency of each group and expression of MMP-2 and TGF-ß2 mRNA within them was detected by qRT-PCR. RESULTS: Flow cytometry results showed that ATRA could inhibit the proliferation of RPE cells and promote the apoptosis of RPE cells, and the difference of apoptosis was statistically significant when the ATRA concentration exceeded 5 µmol/L and compared with the normal control group (P=0.027 and P=0.031, respectively). qRT-PCR results showed that ATRA could significantly inhibit the expression level of RDH5 mRNA (P<0.001) and promote the expression of MMP-2 and TGF-ß2 mRNA (P=0.03 and P<0.001, respectively) in a dose-dependent manner, especially when treated with 5 µmol/L ATRA. The knockdown efficiency of RDH5 siRNA varies with different targets, among which RDH5 siRNA-435 had the highest knockdown efficiency, i.e., more than 50% lower than that of the negative control group (P=0.02). When RDH5 was knocked down for 48h, the results of qRT-PCR showed that the expressions of MMP-2 and TGF-ß2 mRNA were significantly up-regulated (P<0.001). CONCLUSION: ATRA inhibits the expression of RDH5 and promotes MMP-2 and TGF-ß2, and further RDH5 knockdown significantly upregulates MMP-2 and TGF-ß2. These findings suggest that RDH5 may be involved in an epithelial-mesenchymal transition of RPE cells mediated by ATRA.
RESUMO
Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory demyelinating disease of the central nervous system. However, whether and how cortical changes occur in NMOSD with normal-appearing brain tissue, or whether any cortical changes correlate with clinical characteristics, is not completely clear. The current study recruited 43 patients with NMOSD who had normal-appearing brain tissue and 45 healthy controls matched for age, sex, and educational background from December 2020 to February 2022. A surface-based morphological analysis of high-resolution T1-weighted structural magnetic resonance images was used to calculate the cortical thickness, sulcal depth, and gyrification index. Analysis showed that cortical thickness in the bilateral rostral middle frontal gyrus and left superior frontal gyrus was lower in the patients with NMOSD than in the control participants. Subgroup analysis of the patients with NMOSD indicated that compared with those who did not have any optic neuritis episodes, those who did have such episodes exhibited noticeably thinner cortex in the bilateral cuneus, superior parietal cortex, and pericalcarine cortex. Correlation analysis indicated that cortical thickness in the bilateral rostral middle frontal gyrus was positively correlated with scores on the Digit Symbol Substitution Test and negatively correlated with scores on the Trail Making Test and the Expanded Disability Status Scale. These results are evidence that cortical thinning of the bilateral regional frontal cortex occurs in patients with NMOSD who have normal-appearing brain tissue, and that the degree of thinning is correlated with clinical disability and cognitive function. These findings will help improve our understanding of the imaging characteristics in NMOSD and their potential clinical significance.
RESUMO
Colletotrichum species are well-known plant pathogens, saprobes, endophytes, human pathogens and entomopathogens. However, little is known about Colletotrichum as endophytes of plants and cultivars including Citrusgrandis cv. "Tomentosa". In the present study, 12 endophytic Colletotrichum isolates were obtained from this host in Huazhou, Guangdong Province (China) in 2019. Based on morphology and combined multigene phylogeny [nuclear ribosomal internal transcribed spacer (ITS), glyceraldehyde-3-phosphate dehydrogenase (gapdh), chitin synthase 1 (chs-1), histone H3 (his3) actin (act), beta-tubulin (ß-tubulin) and glutamine synthetase (gs)], six Colletotrichum species were identified, including two new species, namely Colletotrichumguangdongense and C.tomentosae. Colletotrichumasianum, C.plurivorum, C.siamense and C.tainanense are identified as being the first reports on C.grandis cv. "Tomentosa" worldwide. This study is the first comprehensive study on endophytic Colletotrichum species on C.grandis cv. "Tomentosa" in China.
RESUMO
Acellular dermal matrix (ADM) is an ideal material for tissue engineering skin construction. Accelerating the vascularization of ADM is of great significance for improving the survival of skin transplantation. The purpose of this study is to investigate the function of granulocyte-colony stimulating factor (G-CSF) in endothelial progenitor cells (EPCs)-mediated neovascularization in ADM-transplanted skin area. Male Kunming mice were subcutaneous injected with 10 µg/kg GCSF at 5 days before skin in situ replantation or porcine ADM transplantation. The surrounding tissues of implanted skin or venous blood was collected from the mice before the operation, and after the operation for 48 h, 72 h, 1 week, and 2 weeks, respectively. Cells co-expressing EPC markers, CD133, CD34, and Flk-1 were detected by flow cytometry. Immunohistochemistry of BrdU was performed to evaluate neovascularization in ADM-transplanted skin area. The results showed that G-CSF treatment increased the number of CD133+-CD34+ cells and CD133+-Flk-1+ cells in ADMimplanted area as well as the number of CD34+-Flk-1+ cells in peripheral blood. Likewise, G-CSF also increased the number of capillaries in ADM-transplanted areas. To sum up, G-CSF mobilizes EPC migration from bone marrow to peripheral blood and homing to wound sites, thus inducing neovascularization in ADM-transplanted areas.