Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; : 134681, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39214831

RESUMO

Bio-based aerogel is a functionalized nanoporous material with environmentally friendly, high surface area, ultra-low density, high porosity, and low thermal conductivity, making it suitable for various applications such as energy-saving buildings, electronic information, separation, adsorption, catalysis, biomedicine, and others. However, the current bio-based chitosan aerogel still faces great challenges in reaching multifunctional improvement to address its intrinsic shortcomings. Herein, we propose a new approach depending upon supramolecular interactions for constructing chitosan/bacterial cellulose aerogels that simultaneously possess superior moisture resistance/fatigue, anti-thermal-shock, and flame retardancy. Specifically, the aerogels demonstrate remarkable characteristics, namely high strength (self-standing itself weight beyond 10,676 times), low thermal conductivity (lowest to 22 mW m-1 K-1 under normal pressure and room temperature), and excellent fatigue resistance (almost negligible permanent deformation at 1 % strain even undergoing compressive cycles up to 10,000 times). On the other hand, the aerogels display exceptional moisture resistance with superhydrophobicity (moisture absorption rate <0.88 % for 160 h at 70 °C and 85 % relative humidity), excellent thermal shock property (withstand cold-hot shock up to 200 cycles with rapid temperature changes between -30 °C and 60 °C), and remarkable fire retardancy (swiftly self-extinguishing in 0.6 s). Additionally, the compressive stress increases to 0.223 MPa at 3 % strain after hydrophobic treatment, representing a 27 % enhancement in mechanical robustness. Further, the mechanism responsible for microstructural evolution has been also established in different strain conditions. This work may provide rich possibilities for developing multifunctional bio-based aerogel for energy-saving buildings.

2.
Gels ; 10(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38534628

RESUMO

The inherent characteristics of cellulose-derived aerogels, such as their natural abundance and environmental friendliness, make them highly interesting. However, its significant shrinkage before and after the supercritical drying procedure and low mechanical strength limit its potential application. Here, we propose a strategy to prepare cellulose diacetate aerogels (CDAAs) with low drying shrinkage, exceptional thermal insulation, and superior mechanical strength. The low drying shrinkage (radial drying shrinkage of 1.4%) of CDAAs is attributed to their relative strong networking skeletons, which are greatly formed by tert-butanol solvent exchange in exerting the interaction of reducing the surface tension force. In this case, CDAAs are eventually endowed with the low bulk density of 0.069 g cm-3 as well. Additionally, as-prepared CDAAs possess an abundant three-dimensional networking structure whose pore size is concentrated in the diameter range of ~50 nm, and the result above is beneficial for improving the thermal insulation performance (thermal conductivity of 0.021 W m-1 K-1 at ambient environmental and pressure conditions). On the other hand, the optimal compressive stresses of CDAAs at 3% and 5% strain are 0.22 and 0.27 MPa respectively, indicating a mechanically well robustness. The above evidence demonstrates indeed the exceptional thermal insulation and superior compressive properties of CDAAs. This work may provide a new solution for developing a kind of high-performance cellulose-derived aerogel in the future.

3.
Carbohydr Polym ; 320: 121245, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659825

RESUMO

Chitosan aerogels could be applied potentially in thermal insulation for energy-saving buildings, separation/adsorption, and catalysis. However, disadvantages of chitosan aerogels include their hydrophilicity and low insufficient mechanical strength. Here we propose a silica-phase hybriding route to create chitosan/silica hybrid aerogels with a synergistic capability for favourable hydrophobicity and superior mechanical strength, demonstrating an emergent finding (hydrophobicity optimised with the improved mechanical strength). The aerogels exhibit low drying shrinkage (as low as 13.41 %), lightweight (lowest to 0.149 g cm-1), high-efficient thermal insulation (thermal conductivity as low as to 0.024 W m-1 K-1 at room temperature and normal pressure) either under cryogenic (-196 °C) or high-temperature conditions, exceptional fire-retardancy (self-extinguishing in 1.8 s) and environmentally friendly characteristic (initial mineralisation after 10 d). High hydrophobic property (water contact angle up to 142°) of the aerogels were achieved depending upon 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane of vapor deposition, presenting a discovery concerning substantial improvement of mechanical properties (up to 0.188 MPa at 5 % strain, increased by 25 %). Furthermore, we demonstrate that a plausible mechanism for simultaneous hydrophobic and mechanical enhancement is depending upon the modulation of networking skeletons at the nanoscale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA