Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 607(Pt 2): 1280-1286, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34583033

RESUMO

Before completely applying inorganic materials as hole transport materials (HTM) for perovskite solar cells (PSCs), modifying devices with inorganic oxides that have the potential as inorganic hole transporters is an effective way to improve device performance and stability. Co2+ doped CuGaO2 nanocrystals (Co-CuGaO2 NCs) with sizes about 20 nm are synthesized by hydrothermal method and used for surface passivation at the interface of perovskite (PVK)/2,2',7,7'-Tetrakis[N,N-di (4-methoxyphenyl) amino]-9,9'-spirobifluorene (spiroOMeTAD). Co-CuGaO2 NCs have a larger bandgap with lower valance band compared with spiroOMeTAD, which is more beneficial to the conduction of holes and the blocking of electrons. Furthermore, the Co-CuGaO2 has a lower valance band energy compared with the original CuGaO2, which reduces the energy gap between Co-CuGaO2 and PVK. Co-CuGaO2 NCs fully cover the upper surface of PVK, which helps prevent direct contact between PVK and oxygen and moisture. The Co-CuGaO2 NCs surface passivation also gives better hole transport as revealed by the ultraviolet photoelectron spectroscopy (UPS), steady-state photoluminescence (PL), and time-resolved photoluminescence (TRPL) data. When the concentration of Co-CuGaO2 NCs solution is set to 7.5 mg mL-1, the device exhibits a best PCE of 20.39% and maintains 84.34% of the initial power conversion efficiency (PCE) after stored 30 days under air atmosphere with 15 ±â€¯5% humidity.

2.
ACS Appl Mater Interfaces ; 11(35): 32159-32168, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31403271

RESUMO

It is well-known that solution-processed polycrystalline perovskite films show a high density of parasitic traps and the defects mainly exist at grain boundaries and surfaces of polycrystal perovskite films, which would limit potential device performance by triggering the undesired recombination and impair device long-term stability by accelerating the degradation of perovskite films. In this regard, defect passivation is highly desirable for achieving efficient and stable perovskite solar cells (PSCs). Here, we report the fabrication of highly reproducible, efficient, and stable PSCs via interface engineering with CoO nanoplates. When a suitable concentration of CoO nanoplates solution is spin-coated on perovskite film, a discontinuous CoO nanoplates modified layer is obtained, which is advantageous to achieving highly photovoltaic performance of the device because the uncovered perovskite crystalline grains can guarantee the unobstructed transport of holes from perovskite layers to hole transport layers. Furthermore, the hydrophobic oleylamine ligands capped CoO nanoplates are well filled in the boundaries of perovskite crystalline grains to effectively passivate the trap states, suppress dark recombination, and enhance moisture-resistance. These benefits are propitious to achieving a 20.72% champion efficiency and a 20.20% steady-state efficiency of the devices with good reproducibility and stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA