RESUMO
Forsythin, currently in phase II clinical trials in China for the treatment of the common cold and influenza, faces challenges in achieving adequate lung drug exposure due to its limited dissolution and permeability, thereby restricting its therapeutic efficacy. The objective of this work was to formulate a forsythin-phospholipid complex (FPC) to enhance its dissolution properties and lung affinity with a particular view to improving pulmonary drug exposure and anti-inflammatory response. The results revealed that forsythin reacted with dipalmitoyl-phosphatidylcholine to form a stable, nanosized FPC suspension. This formulation significantly improved the in vitro drug's dissolution, cellular uptake, and lung affinity compared to its uncomplexed form. Intratracheal administration of FPC in a mouse model of acute lung injury induced by lipopolysaccharide (LPS) resulted in a substantial increase in drug exposure to lung tissues (39.6-fold) and immune cells in the epithelial lining fluid (198-fold) compared to intraperitoneal injection. In addition, FPC instillation exhibited superior local anti-inflammatory effects, leading to improved survival rates among mice with LPS-induced acute respiratory distress syndrome, outperforming both instilled forsythin and injected FPC. Overall, this work demonstrated the potential of phospholipid complexes as a viable option for developing inhalation products for drugs with limited solubility and permeability properties.
RESUMO
Inflammations have been linked to tumours, suggesting a potential association between NLRP1 and cancer. Nevertheless, a systematic assessment of NLRP1's role across various cancer types currently absent. A comprehensive bioinformatic analysis was conducted to determine whether NLRP1 exhibits prognostic relevance linked to immune metabolism across various cancers. The study leveraged data from the TCGA and GTEx databases to explore the clinical significance, metabolic features, and immunological characteristics of NLRP1, employing various tools such as R, GEPIA, STRING and TISIDB. NLRP1 exhibited differential expression patterns across various cancers, with elevated expression correlating with a more favourable prognosis in lung adenocarcinoma (LUAD) and pancreatic adenocarcinoma (PAAD). Downregulation of NLRP1 reduced tumour metabolic activity in LUAD. Moreover, the mutational signature of NLRP1 was linked to a favourable prognosis. Interestingly, high NLRP1 expression inversely correlated with tumour stemness while positively correlating with tumour immune infiltration in various cancers including LUAD and PAAD. Through extensive big data analysis, we delved into the role of NLRP1 across various tumour types, constructing a comprehensive role map of its involvement in pan-cancer scenarios. Our findings highlight the potential of NLRP1 as a promising therapeutic target specifically in LUAD and PAAD.
Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas NLR , Humanos , Proteínas NLR/metabolismo , Proteínas NLR/genética , Prognóstico , Neoplasias/metabolismo , Neoplasias/imunologia , Neoplasias/genética , Neoplasias/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Biologia Computacional/métodos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Mutação , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genéticaRESUMO
As the most effective therapeutic drug for malaria, artemisinin can only be extracted from Artemisia annua L., which is sensitive to the surrounding growing habitat. Histone acetyltransferases (HATs) contain acetyl groups, which modulate mRNA transcription and thereby regulate plant environmental adaptation. Comprehensive analyses of HATs have been performed in many plants, but systematic identification of HATs in medicinal plants is lacking. In the present study, we identified 11 AaHATs and characterized these genes into four classes according to their conserved protein structures. According to the phylogenetic analysis results, potential functions of HAT genes from Arabidopsis thaliana, Oryza sativa, and A. annua were found. According to our results, AaHAT has a highly conserved evolutionary history and is rich in highly variable regions; thus, AaHAT has become a comparatively ideal object of medical plant identification and systematic study. Moreover, motifs commonly present in histone acetyltransferases in the A. annua genome may be associated with functional AaHATs. AaHATs appear to be related to gene-specific functions. AaHATs are regulated by cis-elements, and these genes may affect phytohormone responsiveness, adaptability to stress, and developmental growth. We performed expression analyses to determine the potential roles of AaHATs in response to three environmental stresses. Our results revealed a cluster of AaHATs that potentially plays a role in the response of plants to dynamic environments.
RESUMO
Objective: To examine the precise function of influenza A virus target genes (IATGs) in malignancy. Methods: Using multi-omics data from the TCGA and TCPA datasets, 33 tumor types were evaluated for IATGs. IATG expression in cancer cells was analyzed using transcriptome analysis. Copy number variation (CNV) was assessed using GISTICS 2.0. Spearman's analysis was used to correlate mRNA expression with methylation levels. GSEA was used for the enrichment analysis. Pearson's correlation analysis was used to examine the association between IATG mRNA expression and IC50. The ImmuCellAI algorithm was used to calculate the infiltration scores of 24 immune cell types. Results: In 13 solid tumors, IATG mRNA levels were atypically expressed. Except for UCS, UVM, KICH, PCPG, THCA, CHOL, LAMI, and MESO, most cancers contained somatic IATG mutations. The main types of CNVs in IATGs are heterozygous amplifications and deletions. In most tumors, IATG mRNA expression is adversely associated with methylation. RT-PCR demonstrated that EGFR, ANXA5, CACNA1C, CD209, UVRAG were upregulated and CLEC4M was downregulated in KIRC cell lines, consistent with the TCGA and GTEx data. Conclusion: Genomic changes and clinical characteristics of IATGs were identified, which may offer fresh perspectives linking the influenza A virus to cancer.
Assuntos
Genômica , Vírus da Influenza A , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/virologia , Vírus da Influenza A/genética , Variações do Número de Cópias de DNA , MultiômicaRESUMO
PURPOSE: To investigate the effect of metformin on gut microbiota imbalance in patients with type 2 diabetes mellitus (T2DM), and the value of probiotic supplementation. METHODS: A total of 84 newly diagnosed T2DM patients were randomly divided into probiotics group, metformin group, and control group, with 28 patients in each group. The blood glucose control, islet function, gut microbiota, and inflammatory factors were compared between three groups. RESULTS: After 3 months of treatment, fasting plasma glucose (FPG), 2-h postprandial plasma glucose (2-h PG), and glycosylated hemoglobin A1c (HbA1c) were evidently decreased in both probiotics and metformin groups (P < 0.05) and were lower than that in the control group prior to treatment. Besides, FPG, 2-h PG, and HbA1c were lower in the metformin group than that in the control group. FPG, 2-h PG, and HbA1c were further lower in the probiotic group than in the metformin group (P < 0.05). Fasting insulin (FINS) and islet ß cell (HOMA-ß) -function were dramatically increased in the same group (P < 0.05), while insulin-resistant islet ß cells (HOMA-IR) were significantly lower in the same group (P < 0.05); FINS and HOMA-ß were significantly higher, while HOMA-IR was significantly lower (P < 0.05) in both groups than in the control group prior to treatment. HOMA-IR was also lower in the probiotic group than in the metformin group after treatment (P < 0.05); the number of lactobacilli and bifidobacteria increased (P < 0.05) in both probiotic and metformin groups than in the control group prior to treatment, and the number of Enterobacteriaceae and Enterococcus was lower in the control group prior to treatment (P < 0.05). In addition, the number of lactobacilli and bifidobacteria was higher and the number of enterobacteria and enterococci was lower in the probiotic group than that in the metformin group after treatment, and the differences were statistically significant (P < 0.05). Lipopolysaccharide (LPS), interleukin 6 (IL-6), and C-reactive protein (CRP) levels were lower in both probiotic and metformin groups (P < 0.05). The serum LPS, IL-6, and CRP levels were lower in both probiotic and metformin groups, compared to the control group prior to the treatment (P < 0.05). CONCLUSION: Metformin while treating T2DM assists in improving the imbalance of gut microbiota.
Assuntos
Glicemia , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hemoglobinas Glicadas , Hipoglicemiantes , Metformina , Probióticos , Humanos , Metformina/farmacologia , Metformina/administração & dosagem , Probióticos/administração & dosagem , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Hipoglicemiantes/farmacologia , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/uso terapêutico , Hemoglobinas Glicadas/metabolismo , Glicemia/efeitos dos fármacos , Adulto , Suplementos Nutricionais , Insulina/sangue , IdosoRESUMO
Background: There is limited evidence regarding the correlation between prostate-specific antigen (PSA) kinetics and clinical outcomes. Therefore, after regulating other covariates, we studied patients with castration-resistant prostate cancer who received abiraterone acetate as the first-line treatment. In this study, we investigated whether time to PSA nadir was independently associated with PSA progression-free survival (PFS). Methods: As a retrospective cohort study, this study contained a total of 77 castration-resistant prostate cancer patients who received abiraterone acetate from October 2015 to April 2021 in a Chinese hospital. The dependent variable was PSA-PFS. The objective independent variable was time to PSA nadir (TTPN). Covariates involved in this study included age, duration of androgen deprivation therapy (ADT), PSA level at baseline, time of 50% PSA decline, time of PSA decline to nadir, Gleason score, bone metastasis, previous treatment, PSA decline <50% in 3 months, PSA to nadir in 3 months, PSA decline <90%, PSA decline <0.2 ng/mL, and PSA flare. Results: For the 77 subjects, their mean age was 72.70 ± 8.08 years. Fully calibrated linear regression findings indicated that PSA decline and kinetics were positively associated with PFS (months) after adjusting confounders (ß = 0.77, 95% CI: 0.11-1.44). A non-linear relationship was not detected between PSA decline or PSA kinetics and progression-free survival. Conclusion: According to the data of this study, there was a correlation between early PSA changes and patients treated with abiraterone acetate.
RESUMO
Icariin has been shown the promising therapeutic potential to treat inflammatory airway diseases, yet its poor lung distribution and retention restrict the clinical applications. To this end, this work aimed to prepare an icariin-phospholipid complex (IPC) formulation for sustained nebulization delivery that enabled excellent inhalability, improved lung exposure and prolonged duration of action. Icariin was found to react with soybean phospholipid to form supramolecular IPC, which was able to self-assemble into nanoparticle suspension. The suspension was stable during steam sterilization and nebulization processes, and its aerosols generated by a commercial nebulizer exhibited excellent aerodynamic properties and delivery efficiency. In vitro studies showed that the formation of complex sustained drug release, enhanced lung affinity and slowed lung clearance. The drug distribution in lung epithelial lining fluid (ELF) also demonstrated in vivo sustained release after intratracheal administration to mice. In addition, compared to free icariin, IPC improved the drug exposure to lung tissues and immune cells in the ELF by 4.61-fold and 39.5-fold, respectively. This resulted in improved and prolonged local anti-inflammatory effects up to 24â¯h in mice with lipopolysaccharide (LPS)-induced acute lung injury. Moreover, IPC improved survival rate of mice with acute respiratory distress syndrome (ARDS). Overall, the present phospholipid complex represented a promising formulation of icariin for the treatment of acute lung injury/ARDS by nebulization delivery.
Assuntos
Lesão Pulmonar Aguda , Flavonoides , Pulmão , Fosfolipídeos , Síndrome do Desconforto Respiratório , Animais , Flavonoides/administração & dosagem , Flavonoides/química , Flavonoides/farmacologia , Fosfolipídeos/química , Lesão Pulmonar Aguda/tratamento farmacológico , Camundongos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Síndrome do Desconforto Respiratório/tratamento farmacológico , Administração por Inalação , Masculino , Sistemas de Liberação de Medicamentos , Lipopolissacarídeos/farmacologia , Tamanho da Partícula , Camundongos Endogâmicos BALB CRESUMO
The potential of human umbilical cord mesenchymal stromal cell-derived extracellular vesicles (hucMSC-EVs) in wound healing is promising, yet a comprehensive understanding of how fibroblasts and keratinocytes respond to this treatment remains limited. This study utilizes single-cell RNA sequencing (scRNA-seq) to investigate the impact of hucMSC-EVs on the cutaneous wound microenvironment in mice. Through rigorous single-cell analyses, we unveil the emergence of hucMSC-EV-induced hematopoietic fibroblasts and MMP13+ fibroblasts. Notably, MMP13+ fibroblasts exhibit fetal-like expressions of MMP13, MMP9, and HAS1, accompanied by heightened migrasome activity. Activation of MMP13+ fibroblasts is orchestrated by a distinctive PIEZO1-calcium-HIF1α-VEGF-MMP13 pathway, validated through murine models and dermal fibroblast assays. Organotypic culture assays further affirm that these activated fibroblasts induce keratinocyte migration via MMP13-LRP1 interactions. This study significantly contributes to our understanding of fibroblast heterogeneities as well as intercellular interactions in wound healing and identifies hucMSC-EV-induced hematopoietic fibroblasts as potential targets for reprogramming. The therapeutic targets presented by these fibroblasts offer exciting prospects for advancing wound healing strategies.
Assuntos
Vesículas Extracelulares , Fibroblastos , Células-Tronco Mesenquimais , Análise de Célula Única , Cordão Umbilical , Cicatrização , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Cordão Umbilical/citologia , Cordão Umbilical/metabolismo , Animais , Camundongos , Fibroblastos/metabolismo , Análise de Sequência de RNA , Células Cultivadas , Movimento Celular , Metaloproteinase 13 da Matriz/metabolismo , FetoRESUMO
Due to the unique physiological barriers within the lungs, there are considerable challenges in developing drug delivery systems enabling prolonged drug exposure to respiratory epithelial cells. Here, we report a PulmoSphere-based dry powder technology that incorporates a drug-phospholipid complex to promote intracellular retention of dehydroandrographolide succinate (DAS) in respiratory epithelial cells following pulmonary delivery. The DAS-phospholipid complex has the ability to self-assemble into nanoparticles. After spray-drying to produce PulmoSphere microparticles loaded with the drug-phospholipid complex, the rehydrated microparticles discharge the phospholipid complex without altering its physicochemical properties. The microparticles containing the DAS-phospholipid complex exhibit remarkable aerodynamic properties with a fine particle fraction of â¼ 60% and a mass median aerodynamic diameter of â¼ 2.3 µm. These properties facilitate deposition in the alveolar region. In vitro cell culture and lung tissue explants experiments reveal that the drug-phospholipid complex prolongs intracellular residence time and lung tissue retention due to the slow intracellular disassociation of drug from the complex. Once deposited in the lungs, the DAS-phospholipid complex loaded microparticles increase and extend drug exposure to the lung tissues and the immune cells compared to the free DAS counterpart. The improved drug exposure to airway epithelial cells, but not immune cells, is related to a prolonged duration of pulmonary anti-inflammation at decreased doses in a mouse model of acute lung injury induced by lipopolysaccharide. Overall, the phospholipid complex loaded microparticles present a promising approach for improved treatment of respiratory diseases, e.g. pneumonia and acute respiratory distress syndrome.
RESUMO
BACKGROUND: MRG002 is a novel HER2-targeted antibody-drug conjugate being investigated in the MRG002-006 trial to evaluate the efficacy and safety in HER2-positive urothelial carcinoma patients. METHODS: This is an open-label, single-arm, multicenter phase II study. Eligibility criteria included: histologically confirmed HER2 IHC 2 + or 3 + UC, prior received ≥ 1 standard treatment. Patients in this study received MRG002 every 3 weeks until progressive disease or unacceptable toxicity. The primary endpoint was confirmed ORR per RECIST 1.1. RESULTS: As of February 24, 2023, a total of 43 patients were enrolled. The median age was 60. 9 patients were dosed at 2.6 mg/kg and 34 patients were dosed at 2.2 mg/kg. At baseline, most patients (29/43) received ≥ 2 lines of treatment and 35 (81.4%) patients had prior ICI therapy. FISH test was performed in 41 patients and 9 (22.0%) were positive. By the cut-off date, 41 patients were evaluable and the ORR was 53% (95%CIï¼38.9%-67.5%), with 6.9% CR, and the DCR was 83.7% (95%CIï¼70.0%-91.9%). The median PFS and OS for the 43 patients were 7.0 months (95%CIï¼5.4-NE) and 14.9 months (95%CIï¼11.9-NE), respectively. The ORR was 77.8% in 9 patients with positive HER2 FISH results. Most common treatment-related AEs were anemia (51.2%), alopecia (44.2%) and neutropenia (39.5%); most were grade 1 or 2. CONCLUSION: Preliminary results of MRG002 demonstrated a clinically meaningful response in pretreated HER-2 positive unresectable locally advanced or metastatic UC patients. MRG002 at 2.2 mg/kg was well tolerated with a manageable toxicity.
Assuntos
Anticorpos Monoclonais Humanizados , Imunoconjugados , Receptor ErbB-2 , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Receptor ErbB-2/metabolismo , Idoso , Imunoconjugados/uso terapêutico , Imunoconjugados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Adulto , Idoso de 80 Anos ou mais , Neoplasias Urológicas/tratamento farmacológico , Neoplasias Urológicas/patologia , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/secundárioRESUMO
Recently, there has been increasing emphasis on the gonadotoxic effects of cancer therapy in prepubertal boys. As advances in oncology treatments continue to enhance survival rates for prepubertal boys, the need for preserving their functional testicular tissue for future reproduction becomes increasingly vital. Therefore, we explore cutting-edge strategies in fertility preservation, focusing on the cryopreservation and transplantation of immature testicular tissue as a promising avenue. The evolution of cryopreservation techniques, from controlled slow freezing to more recent advancements in vitrification, with an assessment of their strengths and limitations was exhibited. Detailed analysis of cryoprotectants, exposure times, and protocols underscores their impact on immature testicular tissue viability. In transplantation strategy, studies have revealed that the scrotal site may be the preferred location for immature testicular tissue grafting in both autotransplantation and xenotransplantation scenarios. Moreover, the use of biomaterial scaffolds during graft transplantation has shown promise in enhancing graft survival and stimulating spermatogenesis in immature testicular tissue over time. This comprehensive review provides a holistic approach to optimize the preservation strategy of human immature testicular tissue in the future.
Assuntos
Preservação da Fertilidade , Neoplasias , Humanos , Criança , Masculino , Preservação da Fertilidade/métodos , Criopreservação/métodos , Testículo , Espermatogênese , Neoplasias/cirurgiaRESUMO
Acute lung injury (ALI) is a common and critical respiratory disorder caused by various factors, with viral infection being the leading contributor. Dehydroandrographolide (DAP), a constituent of the Chinese herbal plant Andrographis paniculata, exhibits a range of activities including anti-inflammatory, in vitro antiviral and immune-enhancing effects. This study evaluated the anti-inflammatory effects and pharmacokinetics (PK) profile of DAP in ALI mice induced by intratracheal instillation of Poly(I:C) (PIC). The results showed that oral administration of DAP (10-40â¯mg/kg) effectively suppressed the increase in lung wet-dry weight ratio, total cells, total protein content, accumulation of immune cells, inflammatory cytokines and neutrophil elastase levels in bronchoalveolar lavage fluid of PIC-treated mice. DAP concentrations, determined by an LC-MS/MS method, in plasma after receiving DAP (20â¯mg/kg) were unchanged compared to those in normal mice. However, DAP concentrations and relative PK parameters in the lungs were significantly altered in PIC-treated mice, exhibiting a relatively higher maximum concentration, larger AUC, and longer elimination half-life than those in the lungs of normal mice. These results demonstrated that DAP could improve lung edema and inflammation in ALI mice, and suggested that lung injury might influence the PK properties of DAP, leading to increased lung distribution and residence. Our study provides evidence that DAP displays significant anti-inflammatory activity against viral lung injury and is more likely to distribute to damaged lung tissue.
Assuntos
Lesão Pulmonar Aguda , Anti-Inflamatórios , Líquido da Lavagem Broncoalveolar , Diterpenos , Poli I-C , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Diterpenos/farmacocinética , Diterpenos/farmacologia , Masculino , Camundongos , Andrographis/química , Citocinas/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Elastase de Leucócito/metabolismoRESUMO
Type III interferon (IFN-λ), a new member of the IFN family, was initially considered to possess antiviral functions similar to those of type I interferon, both of which are induced via the JAK/STAT pathway. Nevertheless, recent findings demonstrated that IFN-λ exerts a nonredundant antiviral function at the mucosal surface, preferentially produced in epithelial cells in contrast to type I interferon, and its function cannot be replaced by type I interferon. This review summarizes recent studies showing that IFN-λ inhibits the spread of viruses from the cell surface to the body. Further studies have found that the role of IFN-λ is not only limited to the abovementioned functions, but it can also can exert direct and/or indirect effects on immune cells in virus-induced inflammation. This review focuses on the antiviral activity of IFN-λ in the mucosal epithelial cells and its action on immune cells and summarizes the pathways by which IFN-λ exerts its action and differentiates it from other interferons in terms of mechanism. Finally, we conclude that IFN-λ is a potent epidermal antiviral factor that enhances the respiratory mucosal immune response and has excellent therapeutic potential in combating respiratory viral infections.
Assuntos
Interferon Tipo I , Viroses , Humanos , Interferon lambda , Janus Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Interferon Tipo I/metabolismo , Epitélio/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêuticoRESUMO
Neural networks are developed to model the behavior of the brain. One crucial question in this field pertains to when and how a neural network can memorize a given set of patterns. There are two mechanisms to store information: associative memory and sequential pattern recognition. In the case of associative memory, the neural network operates with dynamical attractors that are point attractors, each corresponding to one of the patterns to be stored within the network. In contrast, sequential pattern recognition involves the network memorizing a set of patterns and subsequently retrieving them in a specific order over time. From a dynamical perspective, this corresponds to the presence of a continuous attractor or a cyclic attractor composed of the sequence of patterns stored within the network in a given order. Evidence suggests that the brain is capable of simultaneously performing both associative memory and sequential pattern recognition. Therefore, these types of attractors coexist within the neural network, signifying that some patterns are stored as point attractors, while others are stored as continuous or cyclic attractors. This article investigates the coexistence of cyclic attractors and continuous or point attractors in certain nonlinear neural networks, enabling the simultaneous emergence of various memory mechanisms. By selectively grouping neurons, conditions are established for the existence of cyclic attractors, continuous attractors, and point attractors, respectively. Furthermore, each attractor is explicitly represented, and a competitive dynamic emerges among these coexisting attractors, primarily regulated by adjustments to external inputs.
RESUMO
OBJECTIVE: Lung squamous cell carcinoma (LUSC) is associated with a low survival rate. Evidence suggests that bone morphogenetic proteins (BMPs) and their receptors (BMPRs) play crucial roles in tumorigenesis and progression. However, a comprehensive analysis of their role in LUSC is lacking. Our study aimed to explore the relationship between BMPs/BMPRs expression levels and the tumorigenesis and prognosis of LUSC. METHODS: The "R/Limma" package was utilized to analyze the differential expression characteristics of BMPs/BMPRs in LUSC, using data from TCGA, GTEx, and GEO databases. Concurrently, the "survminer" packages were employed to investigate their prognostic value and correlation with clinical features in LUSC. The core gene associated with LUSC progression was further explored through weighted gene correlation network analysis (WGCNA). LASSO analysis was conducted to construct a prognostic risk model for LUSC. Clinical specimens were examined by immunohistochemical analysis to confirm the diagnostic value in LUSC. Furthermore, based on the tumor immune estimation resource database and tumor-immune system interaction database, the role of the core gene in the tumor microenvironment of LUSC was explored. RESULTS: GDF10 had a significant correlation only with the pathological T stage of LUSC, and the protein expression level of GDF10 decreased with the tumorigenesis of LUSC. A prognostic risk model was constructed with GDF10 as the core gene and 5 hub genes (HRASLS, HIST1H2BH, FLRT3, CHEK2, and ALPL) for LUSC. GDF10 showed a significant positive correlation with immune cell infiltration and immune checkpoint expression. CONCLUSION: GDF10 might serve as a diagnostic biomarker reflecting the tumorigenesis of LUSC and regulating the tumor immune microenvironment to guide more effective treatment for LUSC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Carcinogênese/genética , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Pulmão , Microambiente Tumoral/genética , Fator 10 de Diferenciação de CrescimentoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Sleep plays a critical role in several physiologic processes, and sleep disorders increase the risk of depression, dementia, stroke, cancer, and other diseases. Stress is one of the main causes of sleep disorders. Ginseng Radix et Rhizoma and Polygalae Radix have been reported to have effects of calming the mind and intensifying intelligence in Chinese Pharmacopoeia. Traditional Chinese medicine prescriptions composed of Ginseng Radix et Rhizoma and Polygalae Radix (Shen Yuan, SY) are commonly used to treat insomnia, depression, and other psychiatric disorders in clinical practice. Unfortunately, the underlying mechanisms of the SY extract's effect on sleep are still unknown. AIM OF THE STUDY: This study aimed to investigate the hypnotic effect of the SY extract in normal mice and mice with chronic restraint stress (CRS)-induced sleep disorders and elucidate the underlying mechanisms. MATERIALS AND METHODS: The SY extract (0.5 and 1.0 g/kg) was intragastrically administered to normal mice for 1, 14, and 28 days and to CRS-treated mice for 28 days. The open field test (OFT) and pentobarbital sodium-induced sleep test (PST) were used to evaluate the hypnotic effect of the SY extract. Liquid chromatography-tandem mass spectrometry and enzyme-linked immunosorbent assay were utilized to detect the levels of neurotransmitters and hormones. Molecular changes at the mRNA and protein levels were determined using real-time quantitative polymerase chain reaction and Western blot analysis to identify the mechanisms by which SY improves sleep disorders. RESULTS: The SY extract decreased sleep latency and increased sleep duration in normal mice. Similarly, the sleep duration of mice subjected to CRS was increased by administering SY. The SY extract increased the levels of tryptophan (Trp) and 5-hydroxytryptamine (5-HT) and the expression of tryptophan hydroxylase 2 (TPH2) in the cortex of normal mice. The SY extract increased the Trp level, transcription and expression of estrogen receptor beta and TPH2 in the cortex in mice with sleep disorders by decreasing the serum corticosterone level, which promoted the synthesis of 5-HT. Additionally, the SY extract enhanced the expression of arylalkylamine N-acetyltransferase, which increased the melatonin level and upregulated the expressions of melatonin receptor-2 (MT2) and Cryptochrome 1 (Cry1) in the hypothalamus of mice with sleep disorders. CONCLUSIONS: The SY extract exerted a hypnotic effect via the Trp/5-HT/melatonin pathway, which augmented the synthesis of 5-HT and melatonin and further increased the expressions of MT2 and Cry1.
Assuntos
Medicamentos de Ervas Chinesas , Melatonina , Distúrbios do Início e da Manutenção do Sono , Humanos , Camundongos , Animais , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/uso terapêutico , Triptofano , Serotonina/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Melatonina/farmacologia , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológicoRESUMO
ATG4B is a core protein and essential for cleaving precursor MAP1LC3/LC3 or deconjugating lipidated LC3-II to drive the formation of autophagosomes. The protein stability and activity of ATG4B regulated by post-translational modification (ubiquitination) will directly affect macroautophagy/autophagy. However, the mechanism involved in ATG4B ubiquitination is largely unclear. In this study, a new E3 ligase of ATG4B, UBE3C, was identified by mass spectra. UBE3C mainly assembles K33-branched ubiquitin chains on ATG4B at Lys119 without causing ATG4B degradation. In addition, the increased ubiquitination of ATG4B caused by UBE3C overexpression inhibits autophagy flux in both normal and starvation conditions, which might be due to the reduced activity of ATG4B and ATG4B-LC3 interaction. This reduction could be reversed once the lysine 119 of ATG4B was mutated to arginine. More important, under starvation conditions the interaction between ATG4B and UBE3C apparently decreased followed by the removal of the K33-branched ubiquitin chain of ATG4B. Thus, starvation-induced autophagy could be partially suppressed by an increased ubiquitination level of ATG4B. In conclusion, our research reveals a novel modification mode of ATG4B in which UBE3C can fine tune ATG4B activity by specific ubiquitination regulating autophagy without causing ATG4B degradation.Abbreviation: ATG: autophagy-related; Baf: bafilomycin A1; CBB: Coomassie Brilliant Blue; CM: complete medium; CQ: chloroquine; GFP: green fluorescent protein; HA-Ub: HA-tagged ubiquitin; IF: immunofluorescence; IP: immunoprecipitation; K: lysine; KO: knockout; K0: all K-to-R mutant; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MS: mass spectrometry; NC: negative control; R: arginine; WCL: whole cell lysate; WT: wild-type.
Assuntos
Autofagia , Lisina , Autofagia/fisiologia , Lisina/metabolismo , Ubiquitinação , Ubiquitina/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Arginina/metabolismoRESUMO
Defect detection on magnetic tile surfaces is of great significance for the production monitoring of permanent magnet motors. However, it is challenging to detect the surface defects from the magnetic tile due to these issues: 1) Defects appear randomly on the surface of the magnetic tile; 2) the defects are tiny and often overwhelmed by the background. To address such problems, an Adaptive Rotation Attention Network (ARA-Net) is proposed for defect detection on the magnetic tile surface, where the Adaptive Rotation Convolution (ARC) module is devised to capture the random defects on the magnetic tile surface by learning multi-view feature maps, and then the Rotation Region Attention (RAA) module is designed to locate the small defects from the complicated background by focusing more attention on the defect features. Experiments conducted on the MTSD3C6K dataset demonstrate the proposed ARA-Net outperforms the state-of-the-art methods, further providing assistance for permanent magnet motor monitoring.
RESUMO
A one-step method for synthesizing 3-(Fmoc-amino acid)-3,4-diaminobenzoic acids was used to prepare preloaded diaminobenzoate resin. The coupling of free diaminobenzoic acid and Fmoc-amino acids gave pure products in 40-94% yield without any purification step in addition to precipitation except for histidine. For the proline residue, crude products were collected and used for solid-phase peptide synthesis to give a moderate yield of a pentapeptide. In addition, this method was used to prepare unusual amino acid derivatives, namely, (2-naphthyl) alanine and 6-aminohexanoic acid derivatives, in 50 and 65% yield, respectively.
RESUMO
BACKGROUND: Oxidative stress and inflammatory responses are critical factors in calcium oxalate (CaOx) crystal-induced renal injury. Reactive oxygen species (ROS) are usually produced in the cytoplasm and mitochondria and trigger the priming and activation of the NLRP3 inflammasome, thereby regulating cytokines and inflammation. Polydatin is a plant rhizome extract with anti-inflammatory, antioxidant, and antitumor effects. However, it remains not clear whether and how these pathophysiological processes exists in CaOx crystal-induced renal inflammatory injury. METHODS: Here, we measured the expression of the NLRP3 inflammasome, IL-18, IL-1ß, intracellular and mitochondrial ROS (mtROS) levels and relevant morphological changes in treated renal tubular epithelial cells (TECs) and stone-forming rats. The study further explored the action of intracellular ROS and mtROS on these inflammatory damage, and the beneficial effects and pathway of polydatin. RESULTS: We verified that CaOx crystal-induced cytoplasmic ROS and mtROS upregulation promoted the priming and activation of the NLRP3 inflammasome, thereby stimulating IL-18/1ß maturation and activation. Polydatin can relieve oxidative stress and inflammatory damage by decreasing ROS. We further demonstrated that mtROS is the main target for polydatin to exert the NLRP3 inflammasome-regulating function. The inhibition of mtROS can effectively relieve the inflammatory damage to TECs and kidney caused by CaOx crystal. CONCLUSION: These findings provide new insight into the relationship between mitochondrial damage and inflammation in nephrolithiasis and show that polydatin-mediated anti-inflammatory and antioxidative protection is a therapeutic strategy for, but not limited to, crystalline nephropathy.