RESUMO
Ticks and tick-borne diseases (TBDs) pose potential health threats to small-scale farmers of grazing animals in the upper highlands of Balochistan, Pakistan. This study was conducted based on a questionnaire survey involving 153 farmers of grazing animals in seven districts to access their knowledge, attitudes, and practices regarding ticks and TBDs. Odds ratios and 95% confidence intervals, based on Fisher's test, were used to assess risk factors for determining preventive measures. The findings revealed a low level of knowledge among the participants. For instance, there was a lack of awareness of the effects of climate change and the economic impact of ticks on animal health. The essential precautions, such as the non-indiscriminate use of acaricides, wearing dark-colored clothing, and limiting children's interaction with grazing animals, were often overlooked. However, the farmers had a positive attitude towards tick control, but they mostly relied on the knowledge of local communities. The neglect of such measures places these farmers and their children at risk of contracting TBDs. This study also indicates minimal involvement from the government in educating farmers and controlling ticks. The role of stakeholders, including the government, non-governmental organizations, veterinary doctors, and local farmer communities, is crucial to address these issues and to implement effective training programs that address misconceptions about ticks and TBDs. Overall, this study highlights the importance of implementing awareness and education programs to address the misconceptions about ticks and TBDs among farmers.
RESUMO
In this study, biogenically synthesized AuNPs were first characterized via UV visible spectroscopy, SEM, XRD, and FTIR followed by toxicity evaluation using mice model. UV-visible spectroscopy of biogenic AuNPs showed peaks at 540-549 nm, while FTIR spectrum showed various functional groups involving O-H, Amide I, Amide II, O-H, C-H groups, and so on. SEM showed the size variation from 30 to 60 nm. Antibacterial potential against pathogenic isolates showed bigger ZOI (31.0 mm) against Pseudomonas aeruginosa AuNPs. Antibiofilm activity showing up to 100% inhibition at 90 µg mL-1 concentration of AuNPs. Toxicity evaluation showed LD50 as 70 mg kg-1. Exposure to AuNPs caused significant changes in the levels of serum AST (p < 0.05) at 100-150 mg kg-1 of AuNPs exposure. Histopathology of male albino mice kidney and liver revealed that mice exposed to maximum concentration of AuNPs showed necrosis, cell distortion, and hepatocytes detachment. Present study showed that biologically synthesized AuNPs possess effective antimicrobial and biofilm inhibitory potential. AuNPs strong bactericidal effect even at lower concentration suggest that NPs could have excellent potential for combating pathogens. In conclusion, nanotechnology may revolutionize human life and medical industry by developing innovative drugs with the potential to treat diseases in shorter and noninvasive time period. Hence, in vitro biosafety and experimental observations followed by in vivo outcomes are crucial in shifting the novel therapeutics into medical practice thus leading further into their future development.
RESUMO
The present study deals with the production of cellulase-free endoxylanase by Aspergillus niger ISL-9 using wheat bran as a solid substrate. Endoxylanase was produced under a solid-state fermentation. Various growth parameters were optimized for the improved production of the enzyme. The Substrate level of 15 g was optimized as it provided the fungus with balanced aeration and nutrition. Among the six moisture contents investigated, Moisture Content 5 (MC5) was optimized (g/l: malt extract, 10; (NH4)2HPO4, 2.5; urea, 1.0) and 10 mL of MC5 was found to give the highest production of endoxylanase. The pH and time of incubation were optimized to 6.2 and 48 h respectively. The Inoculum size of 2 mL (1.4 × 106 spores/mL) gave the maximum enzyme production. After optimization of these growth parameters, a significantly high endoxylanase activity of 21.87 U/g was achieved. Very negligible Carboxymethylcellulase (CMCase) activity was observed indicating the production of cellulase-free endoxylanase. The notable finding is that the endoxylanase activity was increased by 1.4-fold under optimized conditions (p ≤ 0.05). The overall comparison of kinetic parameters for enhanced production of endoxylanase by A. niger ISL-9 under Solid State Fermentation (SSF) was also studied. Different kinetic variables which included specific growth rate, product yield coefficients, volumetric rates and specific rates were observed at 48, 72 and 96 h incubation time and were compared for MC1 and MC5. Among the kinetic parameters, the most significant result was obtained with volumetric rate constant for product formation (Qp) that was found to be optimum (1.89 U/h) at 72 h incubation period and a high value of Qp i.e.1.68 U/h was also observed at 48 h incubation period. Thus, the study demonstrates a cost-effective and environmentally sustainable process for xylanase production and exhibits scope towards successful industrial applications.
Assuntos
Aspergillus niger , Fibras na Dieta , Endo-1,4-beta-Xilanases , Fermentação , Aspergillus niger/enzimologia , Aspergillus niger/metabolismo , Fibras na Dieta/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Endo-1,4-beta-Xilanases/biossíntese , Cinética , Concentração de Íons de Hidrogênio , Meios de Cultura/metabolismo , Meios de Cultura/químicaRESUMO
Heavy metal pollution is a significant environmental concern with detrimental effects on ecosystems and human health, and traditional remediation methods may be costly, energy-intensive, or have limited effectiveness. The current study aims were to investigate the impact of heavy metal toxicity in Eisenia fetida, the growth, reproductive outcomes, and their role in soil remediation. Various concentrations (ranging from 0 to 640 mg per kg of soil) of each heavy metal were incorporated into artificially prepared soil, and vermi-remediation was conducted over a period of 60 days. The study examined the effects of heavy metals on the growth and reproductive capabilities of E. fetida, as well as their impact on the organism through techniques such as FTIR, histology, and comet assay. Atomic absorption spectrometry demonstrated a significant (P < 0.000) reduction in heavy metal concentrations in the soil as a result of E. fetida activity. The order of heavy metal accumulation by E. fetida was found to be Cr > Cd > Pb. Histological analysis revealed a consistent decline in the organism's body condition with increasing concentrations of heavy metals. However, comet assay results indicated that the tested levels of heavy metals did not induce DNA damage in E. fetida. FTIR analysis revealed various functional group peaks, including N-H and O-H groups, CH2 asymmetric stretching, amide I and amide II, C-H bend, carboxylate group, C-H stretch, C-O stretching of sulfoxides, carbohydrates/polysaccharides, disulfide groups, and nitro compounds, with minor shifts indicating the binding or accumulation of heavy metals within E. fetida. Despite heavy metal exposure, no significant detrimental effects were observed, highlighting the potential of E. fetida for sustainable soil remediation. Vermi-remediation with E. fetida represents a novel, sustainable, and cutting-edge technology in environmental cleanup. This study found that E. fetida can serve as a natural and sustainable method for remediating heavy metal-contaminated soils, promising a healthier future for soil.
Assuntos
Recuperação e Remediação Ambiental , Metais Pesados , Oligoquetos , Reprodução , Poluentes do Solo , Oligoquetos/efeitos dos fármacos , Metais Pesados/toxicidade , Animais , Poluentes do Solo/toxicidade , Reprodução/efeitos dos fármacos , Recuperação e Remediação Ambiental/métodos , Ensaio Cometa , Espectroscopia de Infravermelho com Transformada de Fourier , Dano ao DNA , Solo/químicaRESUMO
The order Hymenoptera holds great significance for humans, particularly in tropical and subtropical regions, due to its role as a pollinator of wild and cultivated flowering plants, parasites of destructive insects and honey producers. Despite this importance, limited attention has been given to the genetic diversity and molecular identification of Hymenopteran insects in most protected areas. This study provides insights into the first DNA barcode of Hymenopteran insects collected from Hazarganji Chiltan National Park (HCNP) and contributes to the global reference library of DNA barcodes. A total of 784 insect specimens were collected using Malaise traps, out of which 538 (68.62%) specimens were morphologically identified as Hymenopteran insects. The highest abundance of species of Hymenoptera (133/538, 24.72%) was observed during August and least in November (16/538, 2.97%). Genomic DNA extraction was performed individually from 90/538 (16.73%) morphologically identified specimens using the standard phenol-chloroform method, which were subjected separately to the PCR for their molecular confirmation via the amplification of cytochrome c oxidase subunit 1 (cox1) gene. The BLAST analyses of obtained sequences showed 91.64% to 100% identities with related sequences and clustered phylogenetically with their corresponding sequences that were reported from Australia, Bulgaria, Canada, Finland, Germany, India, Israel, and Pakistan. Additionally, total of 13 barcode index numbers (BINs) were assigned by Barcode of Life Data Systems (BOLD), out of which 12 were un-unique and one was unique (BOLD: AEU1239) which was assigned for Anthidium punctatum. This indicates the potential geographical variation of Hymenopteran population in HCNP. Further comprehensive studies are needed to molecularly confirm the existing insect species in HCNP and evaluate their impacts on the environment, both as beneficial (for example, pollination, honey producers and natural enemies) and detrimental (for example, venomous stings, crop damage, and pathogens transmission).
Assuntos
Himenópteros , Parques Recreativos , Humanos , Animais , Abelhas/genética , Paquistão , Código de Barras de DNA Taxonômico/métodos , Insetos/genética , Himenópteros/genética , Plantas/genéticaRESUMO
The aim of the current study was to screen and identify heavy metal (chromium, cadmium, and lead) associated bacteria from petroleum-contaminated soil of district Muzaffarabad, Azad Jammu and Kashmir, Pakistan to develop ecofriendly technology for contaminated soil remediation. The petroleum-contaminated soil was collected from 99 different localities of district Muzaffarabad and the detection of heavy metals via an atomic absorption spectrometer. The isolation and identification of heavy metals-associated bacteria were done via traditional and molecular methods. Resistogram and antibiogram analysis were also performed using agar well diffusion and agar disc diffusion methods. The isolated bacteria were classified into species, i.e., B. paramycoides, B. albus, B. thuringiensis, B. velezensis, B. anthracis, B. pacificus Burkholderia arboris, Burkholderia reimsis, Burkholderia aenigmatica, and Streptococcus agalactiae. All heavy metals-associated bacteria showed resistance against both high and low concentrations of chromium while sensitive towards high and low concentrations of lead in the range of 3.0 ± 0.0 mm to 13.0 ± 0.0 mm and maximum inhibition was recorded when cadmium was used. Results revealed that some bacteria showed sensitivity towards Sulphonamides, Norfloxacin, Erythromycin, and Tobramycin. It was concluded that chromium-resistant bacteria could be used as a favorable source for chromium remediation from contaminated areas and could be used as a potential microbial filter.
Assuntos
Antibacterianos , Bactérias , Metais Pesados , Testes de Sensibilidade Microbiana , Microbiologia do Solo , Poluentes do Solo , Poluentes do Solo/análise , Metais Pesados/farmacologia , Metais Pesados/análise , Bactérias/efeitos dos fármacos , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Antibacterianos/farmacologia , Paquistão , Petróleo/microbiologia , Petróleo/análise , Cromo/metabolismo , Cádmio/análise , Solo/química , ChumboRESUMO
The study proposes a simple and efficient way to synthesize a heterogeneous catalyst that can be used for the degradation of organic dyes. A simple and fast chemical process was employed to synthesize Au: Ni: Co tri-metal nanohybrid structures, which were used as a catalyst to eliminate toxic organic dye contamination from wastewater in textile industries. The catalyst's performance was tested by degrading individual dyes as well as mixtures of dyes such as methylene blue (MB), methyl orange (MO), methyl red (MR), and Rose Bengal (RB) at various time intervals. The experimental results show the catalytic high degradation efficiency of different dyes achieving 72-90% rates in 29 s. Moreover, the material displayed excellent recycling stability, maintaining its degradation efficiency over four consecutive runs without any degradation in performance. Overall, the findings of the study suggest that these materials possess efficient catalytic properties, opening avenues toward their use in clean energy alternatives, environmental remediation, and other biological applications.
RESUMO
Circular single-stranded DNA viruses of the family Geminiviridae encode replication-associated protein (Rep), which is a multifunctional protein involved in virus DNA replication, transcription of virus genes, and suppression of host defense responses. Geminivirus genomes are replicated through the interaction between virus Rep and several host proteins. The Rep also interacts with itself and the virus replication enhancer protein (REn), which is another essential component of the geminivirus replicase complex that interacts with host DNA polymerases α and δ. Recent studies revealed the structural and functional complexities of geminivirus Rep, which is believed to have evolved from plasmids containing a signature domain (HUH) for single-stranded DNA binding with nuclease activity. The Rep coding sequence encompasses the entire coding sequence for AC4, which is intricately embedded within it, and performs several overlapping functions like Rep, supporting virus infection. This review investigated the structural and functional diversity of the geminivirus Rep.
RESUMO
Overuse of pesticides in agricultural soil and dye-polluted effluents severely contaminates the environment and is toxic to animals and humans making their removal from the environment essential. The present study aimed to assess the biodegradation of pesticides (cypermethrin (CYP) and imidacloprid (IMI)), and dyes (malachite green (MG) and Congo red (CR)) using biofilms of bacteria isolated from pesticide-contaminated soil and dye effluents. Biofilms of indigenous bacteria, i.e., Bacillus thuringiensis 2A (OP554568), Enterobacter hormaechei 4A (OP723332), Bacillus sp. 5A (OP586601), and Bacillus cereus 6B (OP586602) individually and in mixed culture were tested against CYP and IMI. Biofilms of indigenous bacteria i.e., Lysinibacillus sphaericus AF1 (OP589134), Bacillus sp. CF3 (OP589135) and Bacillus sp. DF4 (OP589136) individually and in mixed culture were tested for their ability to degrade dyes. The biofilm of a mixed culture of B. thuringiensis + Bacillus sp. (P7) showed 46.2% degradation of CYP compared to the biofilm of a mixed culture of B. thuringiensis + E. hormaechei + Bacillus sp. + B. cereus (P11), which showed significantly high degradation (70.0%) of IMI. Regarding dye biodegradation, a mixed culture biofilm of Bacillus sp. + Bacillus sp. (D6) showed 86.76% degradation of MG, which was significantly high compared to a mixed culture biofilm of L. sphaericus + Bacillus sp. (D4) that degraded only 30.78% of CR. UV-VIS spectroscopy revealed major peaks at 224 nm, 263 nm, 581 nm and 436 nm for CYP, IMI, MG and CR, respectively, which completely disappeared after treatment with bacterial biofilms. Fourier transform infrared (FTIR) analysis showed the appearance of new peaks in degraded metabolites and disappearance of a peak in the control spectrum after biofilm treatment. Thin layer chromatography (TLC) analysis also confirmed the degradation of CYP, IMI, MG and CR into several metabolites compared to the control. The present study demonstrates the biodegradation potential of biofilm-forming bacteria isolated from pesticide-polluted soil and dye effluents against pesticides and dyes. This is the first report demonstrating biofilm-mediated bio-degradation of CYP, IMI, MG and CR utilizing soil and effluent bacterial flora from Multan and Sheikhupura, Punjab, Pakistan.
RESUMO
BACKGROUND: The current study aimed to develop an economic plant-based therapeutic agent to improve the treatment strategies for diseases at the nano-scale because Cancer and Diabetes mellitus are major concerns in developing countries. Therefore, in vitro and in vivo anti-diabetic and anti-cancerous activities of Trillium govanianum conjugated silver nanoparticles were assessed. METHODS: In the current study synthesis of silver nanoparticles using Trillium govanianum and characterization were done using a scanning electron microscope, UV-visible spectrophotometer, and FTIR analysis. The in vitro and in vivo anti-diabetic and anti-cancerous potential (200 mg/kg and 400 mg/kg) were carried out. RESULTS: It was discovered that Balb/c mice did not show any major alterations during observation of acute oral toxicity when administered orally both TGaqu (1000 mg/kg) and TGAgNPs (1000 mg/kg), and results revealed that 1000 mg/kg is not lethal dose as did not find any abnormalities in epidermal and dermal layers when exposed to TGAgNPs. In vitro studies showed that TGAgNPs could not only inhibit alpha-glucosidase and protein kinases but were also potent against the brine shrimp. Though, a significant reduction in blood glucose levels and significant anti-cancerous effects was recorded when alloxan-treated and CCl4-induced mice were treated with TGAgNPs and TGaqu. CONCLUSION: Both in vivo and in vitro studies revealed that TGaqu and TGAgNPs are not toxic at 200 mg/kg, 400 mg/kg, and 1000 mg/kg doses and possess strong anti-diabetic and anti-cancerous effects due to the presence of phyto-constituents. Further, suggesting that green synthesized silver nanoparticles could be used in pharmaceutical industries to develop potent therapeutic agents.
RESUMO
Nanotechnology is a rapidly developing field of research that studies materials having dimensions of less than 100 nanometers. It is applicable in many areas of life sciences and medicine including skin care and personal hygiene, as these materials are the essential components of various cosmetics and sunscreens. The aim of the present study was to synthesize Zinc oxide (ZnO) and Titanium dioxide (TiO2) nanoparticles (NPs) by using Calotropis procera (C. procera) leaf extract. Green synthesized NPs were characterized by UV spectroscopy, Fourier transform infrared (FTIR), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM) to investigate their structure, size, and physical properties. The antibacterial and synergistic effects of ZnO and TiO2 NPs along with antibiotics were also observed against bacterial isolates. The antioxidant activity of synthesized NPs was analyzed by their α-diphenyl-ß-picrylhydrazyl (DPPH) radical scavenging activity. In vivo toxic effects of the synthesized NPs were evaluated in albino mice at different doses (100, 200, and 300 mg/kg body weight) of ZnO and TiO2 NPs administered orally for 7, 14, and 21 days. The antibacterial results showed that the zone of inhibition (ZOI) was increased in a concentration-dependent manner. Among the bacterial strains, Staphylococcus aureus showed the highest ZOI, i.e., 17 and 14 mm against ZnO and TiO2 NPs, respectively, while Escherichia coli showed the lowest ZOI, i.e., 12 and 10 mm, respectively. Therefore, ZnO NPs are potent antibacterial agents compared to TiO2 NPs. Both NPs showed synergistic effects with antibiotics (ciprofloxacin and imipenem). Moreover, the DPPH activity showed that ZnO and TiO2 NPs have significantly (p > 0.05) higher antioxidant activity, i.e., 53% and 58.7%, respectively, which indicated that TiO2 has good antioxidant potential compared to ZnO NPs. However, the histological changes after exposure to different doses of ZnO and TiO2 NPs showed toxicity-related changes in the structure of the kidney compared to the control group. The current study provided valuable information about the antibacterial, antioxidant, and toxicity impacts of green synthesized ZnO and TiO2 NPs, which can be influential in the further study of their eco-toxicological effects.
RESUMO
Salinity has a significant impact on the water quality and crop yield. Physical desalination techniques were once thought to be expensive and time-consuming. Among biological techniques, halotolerant bacteria were thought to be the fastest and most effective way to reduce the salt content in brackish saltwater water. In the current study, halotolerant bacterial biofilms were used to desalinate saline water on abiotic substrates (such as sand, pebbles, glass beads, and plastic beads), and studied subsequently for the effects on Zea mays germination. Briefly, salt samples (SLT7 and SLT8) from the Khewra site in Punjab, Pakistan, as well as seawater and sea sand samples (USW1, USW3, USW6, DSW1, DSW4, SS1, and SS3) from Karachi, Sindh, Pakistan's Arabian Sea, were collected. Halotolerant bacteria were isolated and characterized. Crystal violet ring assays and capsule staining were used to estimate extracellular polymeric substance (EPS) and biofilm development, respectively. All halotolerant bacterial strains were spore formers and produced EPS and formed biofilms well. 16S rRNA gene sequencing of the best halotolerant bacteria, USW6, showed the closest (100%) similarity to Bacillus aerius strain G-07 (a novel species) (accession number ON202984). A pilot-scale experiment for desalinating the artificial water (supplemented with 1 M NaCl) using biofilm adhered abiotic beads showed declined level of NaCl from 1 M to 0.00003 M after 15 days in treated water. Also, Zea mays germination was observed in the plants using treated water compared to no growth in the non-treated saline water. Estimations of chlorophyll, total soluble sugar, and protein revealed that plants cultivated using elute collected from a desalinated pilot scale setup contained less chlorophyll (i.e., 5.994 and 116.76). Likewise, plants grown with elute had a total soluble protein and sugar content of 1.45 mg/ml and 1.3 mg/ml, respectively. Overall, in treated water plants, a minor drop in chlorophyll content, a slight increase in total soluble sugar content, and a slight increase in protein content were noted. The study concluded that biofilm-treated desalt water has the potential to significantly reduce the effects of droughts, soil salinization, and economic and environmental issues associated with agricultural drainage. The results specified the application of halotolerant bacteria biofilms (Bacillus aerius, a novel species, USW6) for water desalination to overcome the problem of water scarcity caused by global warming and the increased salinity.
Assuntos
Matriz Extracelular de Substâncias Poliméricas , Cloreto de Sódio , Projetos Piloto , Cloreto de Sódio/farmacologia , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Areia , RNA Ribossômico 16S , Bactérias/metabolismo , Biofilmes , Clorofila/metabolismoRESUMO
Water salinity causes less production of agricultural productivity, low economic returns, soil destructions, less sustainability, and reduction in the germination rate. The current study was aimed to understand the combined potential of halophilic bacteria and rice husk in treating water salinity. In total, 10 halophilic bacterial isolates were isolated from Khewra Mines, Pakistan. Bacterial isolates were characterized by biochemical tests. 16S rRNA gene sequencing identified the isolate SO 1 as Bacillus safensis (accession number ON203008) being the promising halophilic bacteria tolerating upto 3 M NaCl concentration. Next, rice husk was used as carbon source for bacterial biofilm formation, growth and propagation. For saline water treatment, the experimental setting comprising glass wool, rice husk and artificial sea water (3 M) was set. B. safensis biofilm was developed in test samples to desaline the saline water containing 3 M NaCl concentration. Following NaCl decline, flame photometric analysis was used to check the desalination extent of treated saline water. Results showed decreased sodium level in sea water in the presence of rice husk and glass wool. The eluted water used for the germination of Zea mays seeds showed improved growth performance. Also, decreased photosynthetic pigments (chlorophyll "a" = 18.99, and chlorophyll "b" = 10.65), sugar contents (0.7593), and increased carotenoid (1526.91), protein contents (0.4521) were noted compared to control. This eco-friendly approach for bioremediation of salt-affected soils to optimize crop yields under stress through halophilic bacteria and rice husk may overcome the problem of the reduced yield of cash crops/agriculture and water shortage by salinity.
Assuntos
Oryza , Cloreto de Sódio/metabolismo , RNA Ribossômico 16S/genética , Archaea/genética , Clorofila/metabolismo , Solo/química , Águas Salinas , Biofilmes , SalinidadeRESUMO
Antibiotic drug resistance is a global public health issue that demands new and novel therapeutic molecules. To develop new agents, animal secretions or products are used as an alternative agent to overcome this problem. In this study, earthworm (Pheretima posthuma) coelomic fluid (PCF), and body paste (PBP) were used to analyze their effects as antibiofilm agents against four bacterial isolates MH1 (Pseudomonas aeruginosa MT448672), MH2 (Escherichia coli MT448673), MH3 (Staphylococcus aureus MT448675), and MH4 (Klebsiella pneumoniae MT448676). Coelomic fluid extraction and body paste formation were followed by minimum inhibitory concentrations (MICs), biofilm formation time kinetics, and an antibiofilm assay, using heat and cold shock, sunlight exposure auto-digestion, and test tube methods. The results showed that the MIC values of PCF and PBP against S. aureus, P. aeruginosa, K. pneumoniae, and E. coli bacterial isolates ranged from 50 to 100 µg/mL, while, the results related to biofilm formation for P. aeruginosa, S. aureus, and K. pneumoniae strains were observed to be highly significantly increased (p < 0.005) after 72 h. E. coli produced a significant (p < 0.004) amount of biofilm after 48 h. Following time kinetics, the antibiofilm activity of PCF and PBP was tested at different concentrations (i.e., 25-200 µg/mL) against the aforementioned four strains (MH1-MH4). The findings of this study revealed that both PBP (5.61 ± 1.0%) and PCF (5.23 ± 1.5%) at the lowest concentration (25 µg/mL) showed non-significant (p > 0.05) antibiofilm activity against all the selected strains (MH1-MH4). At 50 µg/mL concentration, both PCF and PBP showed significant (p < 0.05) biofilm inhibition (<40%) for all isolates. Further, the biofilm inhibitory potential was also found to be more significant (p < 0.01) at 100 µg/mL of PCF and PBP, while it showed highly significant (p < 0.001) biofilm inhibition at 150 and 200 µg/mL concentrations. Moreover, more than 90% biofilm inhibition was observed at 200 µg/mL of PCF, while in the case of the PBP, <96% biofilm reduction (i.e., 100%) was also observed by all selected strains at 200 µg/mL. In conclusion, earthworm body fluid and paste have biologically active components that inhibit biofilm formation by various pathogenic bacterial strains. For future investigations, there is a need for further study to explore the potential bioactive components and investigate in depth their molecular mechanisms from a pharmaceutical perspective for effective clinical utilization.
RESUMO
BACKGROUND: With increased urbanization and industrialization, modern life has led to an anthropogenic impact on the biosphere. Heavy metals pollution and pollutants from black liquor (BL) have caused severe effects on environment and living organisms. Bacterial biofilm has potential to remediate heavy metals and remove BL from the environment. Hence, this study was planned to investigate the potential of microbial biofilms for the bioremediation of heavy metals and BL polluted environments. METHODS AND RESULTS: Eleven biofilm forming bacterial strains (SB1, SB2, SC1, AF1, 5A, BC-1, BC-2, BC-3, BC-4, BC-5 and BC-6) were isolated and identified upto species level via 16S rRNA gene sequencing. Biofilm strains belonging to Bacillus and Lysinibacillus sphaericus were used to remediate heavy metals (Pb, Ni, Mn, Zn, Cu, and Co). Atomic absorption spectroscopy showed significantly high (P ≤ 0.05) bioremediation potential by L. sphaericus biofilm (1462.0 ± 0.67 µgmL-1) against zinc (Zn). Similarly, Pseudomonas putida biofilm significantly (P ≤ 0.05) decolourized (65.1%) BL. Fourier transform infrared (FTIR) analysis of treated heavy metals showed the shifting of major peaks (1637 & 1629-1647, 1633 & 1635-1643, and 1638-1633 cm-1) corresponding to specific amide groups due to C = O stretching. CONCLUSION: The study suggested that biofilm of the microbial flora from tanneries and pulp paper effluents possesses a strong potential for heavy metals bioremediation and BL decolourization. To our knowledge, this is the first report showing promising biofilm remediation potential of bacterial flora of tanneries and pulp-paper effluent from Kasur and Sheikhupura, Punjab, Pakistan, against heavy metals and BL.
Assuntos
Bacillus , Metais Pesados , Pseudomonas putida , Biodegradação Ambiental , RNA Ribossômico 16S/genética , Metais Pesados/análise , Zinco/análise , Pseudomonas putida/genética , Bacillus/genética , BiofilmesRESUMO
A low temperature alkali (LTA) pretreatment method was used to treat wheat straw. In order to obtain good results, different factors like temperature, incubation time, NaOH concentration and solid to liquid ratio for the pretreatment process were optimized. Wheat straw is a potential biomass for the production of monomeric sugars. The objective of the current study was to observe the saccharification (%) of wheat straw with immobilized magnetic nanoparticles (MNPs). For this purpose, immobilized MNPs of purified ß-xylanase enzyme was used for hydrolysis of pretreated wheat straw. Wheat straw was pretreated using the LTA method and analyzed by SEM analysis. After completion of the saccharification process, saccharification% was calculated by using a DNS method. Scanning electron micrographs revealed that the hemicellulose, cellulose and lignin were partially removed and changes in the cell wall structure of the wheat straw had caused it to become deformed, increasing the specific surface area, so more fibers of the wheat straw were exposed to the immobilized ß-xylanase enzyme after alkali pretreatment. The maximum saccharification potential of wheat straw was about 20.61% obtained after pretreatment with optimized conditions of 6% NaOH, 1/10 S/L, 30 °C and 72 hours. Our results indicate the reusability of the ß-xylanase enzyme immobilized magnetic nanoparticles and showed a 15% residual activity after the 11th cycle. HPLC analysis of the enzyme-hydrolyzed filtrate also revealed the presence of sugars like xylose, arabinose, xylobiose, xylotriose and xylotetrose. The time duration of the pretreatment has an important effect on thermal energy consumption for the low-temperature alkali method.
RESUMO
Heavy metal contamination raised significant concerns throughout the world. The current research aimed to evaluate the impact of organic manure (cow dung and buffalo dung) on vermiremediation and phytoremediation and to remediate heavy metals, i.e., cadmium, lead, and chromium, from artificial contaminated soil via both remediation techniques. The impact of livestock manure was evaluated for the first time which could be effective in in situ as well as ex situ studies. Eisenia fetida, Pheretima lignicola, and Spinacia oleracea were used for the remediation process. Results revealed that E. fetida tolerated lead at 280 mg, cadmium at 150 mg, and chromium at 860 mg compared to P. lignicola. The growth and reproduction of E. fetida were efficient in the cow dung manure compared to buffalo dung. Similarly, seed germination and growth of Spinacia oleracea were better in cow dung media compared to buffalo dung. Bioaccumulation factor showed that E. fetida showed a higher accumulation of heavy metals in their tissues when vermi + phytoremediation was jointly applied (9.50 mg/l of Pb, 24.166 of Cd, and 6.695 of Cr). Fourier-transform infrared spectroscopy indicated that heavy metals had no drastic effects on E. fetida and S. oleracea. Similarly, comet assay revealed that heavy metals had no genotoxic effect on the E. fetida and S. oleracea. It was concluded that both E. fetida and S. oleracea are appropriate for heavy metals remediation in cow dung manure.
Assuntos
Metais Pesados , Oligoquetos , Poluentes do Solo , Animais , Feminino , Bovinos , Esterco , Cádmio , Búfalos , Biodegradação Ambiental , Ensaio Cometa , Solo/química , Metais Pesados/análise , Cromo , Análise Espectral , Poluentes do Solo/análiseRESUMO
Diabetes has become a critical challenge to the global health concerns. Cytotoxicity and development of resistance against available drugs for management of diabetes have shifted the focus of global scientific researchers from synthetic to herbal medications. Therefore, the current study was conducted to investigate the possible anti-hyperglycemic potential of Dryopteris stewartii using Swiss albino mice. To evaluate any possible toxic effect of the plant, acute oral toxicity test was performed while the anti-diabetic effects of aqueous and ethanol extracts at 500 mg/kg, positive, negative and normal control were assessed simultaneously. The anti-diabetic study revealed that aqueous extract has higher anti-diabetic potential than ethanol extract while lowered blood glucose level at second week reaching 150 mg/dL, exerting stronger anti-diabetic effects, compared to ethanol extract (190 mg/dL). Oral glucose tolerance findings revealed that aqueous extract decreased blood glucose level by -0.41-fold, compared to ethanol extract showing a decrease by only -0.29-folds. The histopathological evaluation of liver and pancreas of all groups revealed normal cell architecture with no morphological abnormalities. These results suggested the possible use of D. stewartii as anti-diabetic herbal drug in near future. However, these recommendations are conditioned by deep mechanistic studies.
Assuntos
Diabetes Mellitus Experimental , Dryopteris , Gleiquênias , Camundongos , Animais , Aloxano/efeitos adversos , Diabetes Mellitus Experimental/patologia , Glicemia , Hipoglicemiantes/efeitos adversos , Extratos Vegetais/efeitos adversos , Etanol/efeitos adversosRESUMO
Biogenic synthesis of cobalt (Co) and copper (Cu) nanoparticles (NPs) was performed using the bacterial strains Escherichia coli and Bacillus subtilis. Prepared NPs were confirmed by a color change to maroon for CoNPs and green for CuNPs. The NPs characterization using FTIR showed the presence of functional groups, i.e., phenols, acids, protein, and aromatics present in the Co and CuNPs. UV-vis spectroscopy of E. coli and B. subtilis CuNPs showed peaks at 550 and 625 nm, respectively. For E. coli and B. subtilis CoNPs, peaks were observed at 300 nm and 350 nm, respectively. Antibacterial and antifungal activity of B. subtilis and E. coli Co and CuNPs was determined at 100 mg/mL concentration against two bacterial strains at 5, 2.5, and 1.5 mg/mL against fungal two strains F. oxysporum and T. viridi, respectively. B. subtilis CuNPs showed significantly higher inhibition zones (ZOI=25.7-29.7 mm) against E. coli and B. subtilis compared to other biogenic NPs. Likewise, B. Subtilis CuNPs showed lower MIC (4.3 ± 6.3) and MBC (5.3 mg/mL) values against both tested isolates. Antifungal activity of B. subtilis and E. coli CuNPs and CoNPs showed a concentration-dependent decrease in ZOI. Among all biogenic NPs, B. subtilis CoNPs showed the highest ZOI (25-30 mm) against F. oxysporum followed by E. coli CuNPs with maximum ZOI (20-27 mm) against T. viridi. Again, B. subtilis CoNPs and E. coli CuNPs showed lowest MIC and MFC values against both fungal isolates. In conclusion, the current study showed that biogenically synthesized B. subtilis Cu or CoNPs can be used as effective antimicrobial agents due to their potential antibacterial and antifungal potential.
Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Cobre/farmacologia , Cobre/química , Antifúngicos/farmacologia , Antifúngicos/química , Testes de Sensibilidade Microbiana , Cobalto/farmacologia , Escherichia coli/metabolismo , Nanopartículas Metálicas/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , BactériasRESUMO
Bacterial resistance to already present antibiotics demands for new approaches in field of medicine. Scientists prefer nanoparticles (NPs) due to their promising potential in many applications. Two bacterial strains, Escherichia coli and Bacillus subtilis were used for biogenic synthesis of NPs. Characterization of prepared NPs was accomplished using UV-vis spectroscopy and fourier transform infrared spectroscopy (FTIR). The prepared NPs were confirmed by the color change from pale yellow to having white deposition for Zn NPs while from dark green to light green for Ni NPs. UV-vis spectroscopy of E. coli and B. subtilis based ZnNPs showed highest peak at 354nm and 362nm, respectively. Likewise, E. coli and B. subtilis NiNPs showed peaks at 246 nm and 238 nm, respectively. Antibacterial activity of B. subtilis based ZnNPs showed significant (p ≤ 0.05) zone of inhibition (ZOI; 27.3±0.6) against B. subtilis and 26.66±0.67 against E. coli at 100 mg/mL. Antibacterial activity of E. coli based ZnNPs showed 8.3±0.3 ZOI against B. subtilis and 6.6±0.3 ZOI against E. coli while NiNPs showed (25.0±0.0 mm) (ZOI) against B. subtilis and (25.0 ± 0.3 mm) against E. coli. Minimum inhibitory concentration (MIC) of E. coli ZnNPs showed values of 6.7±0.3 µg/mL for E. coli and 4.7±0.3 µg/mL for B. subtilis. MIC of B. subtilis ZnNPs showed 5.3±0.3 µg/mL for E. coli and 6.6±0.3 µg/mL for B. subtilis while NiNPs showed 33.0±1.0 µg/mL against E. coli and 24.0±1.0 µg/mL against B. subtilis as effective inhibitory concentrations. Minimum bactericidal concentration (MBC) of E. coli ZnNPs showed 7.3±0.3 µg/mL for E. coli and 8.3±0.3 µg/mL for B. subtilis. MBC of B. subtilis ZnNPs showed 7.6±0.3 µg/mL for E. coli and 8.6±0.3 µg/mL for B. subtilis while NiNPs showed 45.7±1.3 µg/mL against E. coli and 33.0±1.0 µg/mL against B. subtilis as effective inhibitory concentrations. It was concluded from the current study that biogenically synthesized ZnNPs and NiNPs are effective as promising antibacterial agents and have potential applications in biomedical fields.