Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Methods ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39175464

RESUMO

Sorting cells while maintaining their viability for further processing or analysis is an essential step in a variety of biological processes ranging from early diagnostics to cell therapy. Sorting techniques such as fluorescence-activated cell sorting (FACS) have evolved considerably and provide standard ways of sorting. Nevertheless, the search for compact, integrated, efficient, and high throughput microfluidic sorting platforms continues due to challenges such as cost, cell viability, and biosafety. In our previous work, we introduced a technology with the potential to become such a platform: the bubble-jet sorter. It is a silicon-based sorter chip relying on cell deflection through micro vapor bubble formation. In this work, we present a new version of the sorter chip that emphasizes durability and continuous sorting operation. To characterize the sorter, we first focus on the technical performance and show a sorter lifetime that repeatedly exceeds 80 million actuation cycles. In addition, we show continuous operation at high firing rates, but also discuss limitations due to heat buildup. In a second step, we present continuous sorting runs of millions of beads and CD3 positive T cells at rates surpassing 1000 sorting events per second, while maintaining high purity (>90%) and recovery (>85%). Dedicated viability tests show that the gentle sorting process maintains cell viability in this closed, aerosol-free device. The remarkable combination of high lifetime, sorting rate, and sorting efficiency, along with the potential for on-chip parallelization show the promise of this technology to meet the growing demand for large-scale sample isolation in drug and immunotherapy development.

2.
Sci Rep ; 14(1): 10921, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769346

RESUMO

Differentiation between leukocyte subtypes like monocytes and lymphocytes is essential for cell therapy and research applications. To guarantee the cost-effective delivery of functional cells in cell therapies, billions of cells must be processed in a limited time. Yet, the sorting rates of commercial cell sorters are not high enough to reach the required yield. Process parallelization by using multiple instruments increases variability and production cost. A compact solution with higher throughput can be provided by multichannel flow cytometers combining fluidics and optics on-chip. In this work, we present a micro-flow cytometer with monolithically integrated photonics and fluidics and demonstrate that both the illumination of cells, as well as the collection of scattered light, can be realized using photonic integrated circuits. Our device is the first with sufficient resolution for the discrimination of lymphocytes and monocytes. Innovations in microfabrication have enabled complete integration of miniaturized photonic components and fluidics in a CMOS-compatible wafer stack. In combination with external optics, the device is ready for the collection of fluorescence using the on-chip excitation.


Assuntos
Citometria de Fluxo , Dispositivos Lab-On-A-Chip , Leucócitos , Humanos , Citometria de Fluxo/métodos , Citometria de Fluxo/instrumentação , Leucócitos/citologia , Óptica e Fotônica/instrumentação , Óptica e Fotônica/métodos , Monócitos/citologia , Linfócitos/citologia , Desenho de Equipamento
3.
Cells ; 13(1)2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38201211

RESUMO

Among cancer diagnoses in women, ovarian cancer has the fifth-highest mortality rate. Current treatments are unsatisfactory, and new therapies are highly needed. Immunotherapies show great promise but have not reached their full potential in ovarian cancer patients. Implementation of an immune readout could offer better guidance and development of immunotherapies. However, immune profiling is often performed using a flow cytometer, which is bulky, complex, and expensive. This equipment is centralized and operated by highly trained personnel, making it cumbersome and time-consuming. We aim to develop a disposable microfluidic chip capable of performing an immune readout with the sensitivity needed to guide diagnostic decision making as close as possible to the patient. As a proof of concept of the fluidics module of this concept, acquisition of a limited immune panel based on CD45, CD8, programmed cell death protein 1 (PD1), and a live/dead marker was compared to a conventional flow cytometer (BD FACSymphony). Based on a dataset of peripheral blood mononuclear cells of 15 patients with ovarian cancer across different stages of treatment, we obtained a 99% correlation coefficient for the detection of CD8+PD1+ T cells relative to the total amount of CD45+ white blood cells. Upon further system development comprising further miniaturization of optics, this microfluidics chip could enable immune monitoring in an outpatient setting, facilitating rapid acquisition of data without the need for highly trained staff.


Assuntos
Pacientes Ambulatoriais , Neoplasias Ovarianas , Humanos , Feminino , Microfluídica , Leucócitos Mononucleares , Monitorização Imunológica , Neoplasias Ovarianas/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA