Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(8): 2754-9, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21697511

RESUMO

Cyclin-dependent kinase subunit (Cks) proteins are small cyclin-dependent kinase-interacting proteins that are frequently overexpressed in breast cancer, as well as in a broad spectrum of other human malignancies. However, the mechanistic link between Cks protein overexpression and oncogenesis is still unknown. In this work, we show that overexpression of Cks1 or Cks2 in human mammary epithelial and breast cancer-derived cells, as well as in other cell types, leads to override of the intra-S-phase checkpoint that blocks DNA replication in response to replication stress. Specifically, binding of Cks1 or Cks2 to cyclin-dependent kinase 2 confers partial resistance to the effects of inhibitory tyrosine phosphorylation mediated by the intra-S-phase checkpoint, allowing cells to continue replicating DNA even under conditions of replicative stress. Because many activated oncoproteins trigger a DNA damage checkpoint response, which serves as a barrier to proliferation and clonal expansion, Cks protein overexpression likely constitutes one mechanism whereby premalignant cells can circumvent this DNA damage response barrier, conferring a proliferative advantage under stress conditions, and therefore contributing to tumor development.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Dano ao DNA , Proteínas Oncogênicas/metabolismo , Proteínas Quinases/metabolismo , Animais , Quinases relacionadas a CDC2 e CDC28 , Linhagem Celular Tumoral , Células HEK293 , Humanos , Hidroxiureia/farmacologia , Camundongos , Fase S/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Timidina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA