Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Cell Biol ; 12: 52, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22136066

RESUMO

BACKGROUND: Phosphorylation of non-muscle myosin II regulatory light chain (RLC) at Thr18/Ser19 is well established as a key regulatory event that controls myosin II assembly and activation, both in vitro and in living cells. RLC can also be phosphorylated at Ser1/Ser2/Thr9 by protein kinase C (PKC). Biophysical studies show that phosphorylation at these sites leads to an increase in the Km of myosin light chain kinase (MLCK) for RLC, thereby indirectly inhibiting myosin II activity. Despite unequivocal evidence that PKC phosphorylation at Ser1/Ser2/Thr9 can regulate myosin II function in vitro, there is little evidence that this mechanism regulates myosin II function in live cells. RESULTS: The purpose of these studies was to investigate the role of Ser1/Ser2/Thr9 phosphorylation in live cells. To do this we utilized phospho-specific antibodies and created GFP-tagged RLC reporters with phosphomimetic aspartic acid substitutions or unphosphorylatable alanine substitutions at the putative inhibitory sites or the previously characterized activation sites. Cell lines stably expressing the RLC-GFP constructs were assayed for myosin recruitment during cell division, the ability to complete cell division, and myosin assembly levels under resting or spreading conditions. Our data shows that manipulation of the activation sites (Thr18/Ser19) significantly alters myosin II function in a number of these assays while manipulation of the putative inhibitory sites (Ser1/Ser2/Thr9) does not. CONCLUSIONS: These studies suggest that inhibitory phosphorylation of RLC is not a substantial regulatory mechanism, although we cannot rule out its role in other cellular processes or perhaps other types of cells or tissues in vivo.


Assuntos
Cadeias Leves de Miosina/metabolismo , Miosina Tipo II/metabolismo , Serina/metabolismo , Treonina/metabolismo , Domínio Catalítico , Divisão Celular , Células Cultivadas , Células HeLa , Humanos , Cadeias Leves de Miosina/química , Miosina Tipo II/química , Fosforilação , Serina/química , Treonina/química
2.
Cancer Res ; 66(9): 4725-33, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16651425

RESUMO

Initial stages of tumor cell metastasis involve an epithelial-mesenchyme transition that involves activation of amoeboid migration and loss of cell-cell adhesion. The actomyosin cytoskeleton has fundamental but poorly understood roles in these events. Myosin II, an abundant force-producing protein, has roles in cell body translocation and retraction of the posterior of the cell during migration. Recent studies have suggested that this protein may also have roles in leading edge protrusive events. The metastasis-promoting protein metastasin-1, a regulator of myosin II assembly, colocalizes with myosin IIA at the leading edge of cancer cells, suggesting direct roles for myosin II in metastatic behavior. We have assessed the roles of specific myosin II isoforms during lamellar spreading of MDA-MB-231 breast cancer cells on extracellular matrix. We find that the two major myosin II isoforms IIA and IIB are both expressed in these cells, and both are recruited dramatically to the lamellar margin during active spreading on fibronectin. There is also a transient increase in regulatory light chain phosphorylation that correlates the recruitment of myosin IIA and myosin IIB into this spreading margin. Pharmacologic inhibition of myosin II or myosin light chain kinase dramatically reduced spreading. Depletion of myosin IIA via small interfering RNA impaired migration but enhanced lamellar spreading, whereas depletion of myosin IIB impaired not only migration but also impaired initial rates of lamellar spreading. These results indicate that both isoforms are critical for the mechanics of cell migration, with myosin IIB seeming to have a preferential role in the mechanics of lamellar protrusion.


Assuntos
Neoplasias da Mama/patologia , Movimento Celular/fisiologia , Miosina não Muscular Tipo IIA/fisiologia , Miosina não Muscular Tipo IIB/fisiologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Fibronectinas , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Quinase de Cadeia Leve de Miosina/antagonistas & inibidores , Quinase de Cadeia Leve de Miosina/metabolismo , Miosina não Muscular Tipo IIA/antagonistas & inibidores , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIA/metabolismo , Miosina não Muscular Tipo IIB/antagonistas & inibidores , Miosina não Muscular Tipo IIB/genética , Miosina não Muscular Tipo IIB/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , Transfecção , Quinases Associadas a rho
3.
Mol Biol Cell ; 16(9): 4256-66, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15987738

RESUMO

Myosin II filament assembly in Dictyostelium discoideum is regulated via phosphorylation of residues located in the carboxyl-terminal portion of the myosin II heavy chain (MHC) tail. A series of novel protein kinases in this system are capable of phosphorylating these residues in vitro, driving filament disassembly. Previous studies have demonstrated that at least three of these kinases (MHCK A, MHCK B, and MHCK C) display differential localization patterns in living cells. We have created a collection of single, double, and triple gene knockout cell lines for this family of kinases. Analysis of these lines reveals that three MHC kinases appear to represent the majority of cellular activity capable of driving myosin II filament disassembly, and reveals that cytokinesis defects increase with the number of kinases disrupted. Using biochemical fractionation of cytoskeletons and in vivo measurements via fluorescence recovery after photobleaching (FRAP), we find that myosin II overassembly increases incrementally in the mutants, with the MHCK A(-)/B(-)/C(-) triple mutant showing severe myosin II overassembly. These studies suggest that the full complement of MHC kinases that significantly contribute to growth phase and cytokinesis myosin II disassembly in this organism has now been identified.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/fisiologia , Citocinese/fisiologia , Citoesqueleto/enzimologia , Dictyostelium/enzimologia , Miosina Tipo II/fisiologia , Animais , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Linhagem Celular , Dictyostelium/crescimento & desenvolvimento , Genes Reporter , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA