Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Radioact ; 257: 107088, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36521278

RESUMO

Aerosol monitoring for radioactivity is a mature and proven technology. However, by improving key specifications of aerosol monitoring equipment, more samples per day can be collected and analyzed with the same minimum detectable concentrations as current systems. This work models hypothetical releases of 140Ba and 131I over a range of magnitudes corresponding to the inventory produced from the fission of about 100 g to 1 kiloton TNT-equivalent of 235U. The releases occur over an entire year to incorporate the natural variability in atmospheric transport. Sampling equipment located at the 79 locations for radionuclide stations identified in the Comprehensive Nuclear-Test-Ban Treaty (CTBT) for the International Monitoring System are used to determine the detections of the individual releases. Alternative collection schemes in next generation equipment that collect 2, 3, or 4 samples per day, rather than the current 1 sample per day, would result in detections in many more samples at more stations with detections for a given release level. The authors posit that next generation equipment will result in increased network resilience to outages and improved source-location capability for lower yield source releases. The application of dual-detector and coincidence measurements to these systems would significantly boost sensitivity for some isotopes and would further enhance the monitoring capability.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Poluentes Radioativos do Ar/análise , Isótopos , Radioisótopos do Iodo , Cooperação Internacional , Radioisótopos de Xenônio/análise
2.
J Environ Radioact ; 208-209: 106037, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31476609

RESUMO

Pacific Northwest National Laboratory (PNNL) staff developed the Radionuclide Aerosol Sampler Analyzer (RASA) for worldwide aerosol monitoring in the 1990s. Recently, researchers at PNNL and Creare, LLC, have investigated possibilities for how RASA could be improved, based on lessons learned from more than 15 years of continuous operation, including during the Fukushima Daiichi Nuclear Power Plant disaster. Key themes addressed in upgrade possibilities include having a modular approach to additional radionuclide measurements, optimizing the sampling/analyzing times to improve detection location capabilities, and reducing power consumption by using electrostatic collection versus classic filtration collection. These individual efforts have been made in a modular context that might constitute retrofits to the existing RASA, modular components that could improve a manual monitoring approach, or a completely new RASA. Substantial optimization of the detection and location capabilities of an aerosol network is possible and new missions could be addressed by including additional measurements.


Assuntos
Aerossóis/análise , Poluentes Radioativos do Ar/análise , Monitoramento de Radiação , Acidente Nuclear de Fukushima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA