Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Immun Ageing ; 21(1): 2, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166948

RESUMO

BACKGROUND: Sorting Nexin 27 (SNX27)-retromer complex facilitates cargo recycling from endosomes to the plasma membrane. SNX27 downregulation in neurons, as the result of Trisomy 21 (T21), has been linked with cognitive deficits due to impairment of AMPA and NMDA receptor recycling. Studies in human T cell lines likewise demonstrated that SNX27 regulates the correct delivery of cargoes to the immune synapse limiting the activation of pro-inflammatory pathways. Nevertheless, the physiological consequences of partial SNX27 loss in T cell homeostasis are still unclear. RESULTS: In this study, we have explored the consequences of T cell specific partial SNX27 downregulation in mice. T cells with partial SNX27 deficiency show a marked deficit in the CD4+ T cell pool, a hallmark of aging in mice and humans, and a well-characterized comorbidity of individuals with Down syndrome (DS). When analyzed ex vivo, CD4+ T cells with partial SNX27 deletion demonstrate enhanced proliferation but diminished IL-2 production. In contrast, the CD8+ population show enhanced expression of pro-inflammatory cytokines and lytic enzymes. CONCLUSIONS: This mouse model supports the relevance of SNX27 in the organization of the immune synapse, previously described in cell lines, as well as in the control of T cell homeostasis. Individuals with DS experiment an acceleration of the aging process, which particularly affects the immune and central nervous systems. Thus, we hypothesize that reduced SNX27 expression in DS could contribute to the dysregulation of these systems and further research in SNX27 will shed light on the molecular factors underlying the phenotypes observed in people with DS and its contribution to aging.

2.
Int J Mol Sci ; 24(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37628973

RESUMO

Proteins containing PDZ (post-synaptic density, PSD-95/disc large, Dlg/zonula occludens, ZO-1) domains assemble signaling complexes that orchestrate cell responses. Viral pathogens target host PDZ proteins by coding proteins containing a PDZ-binding motif (PBM). The presence of a PBM in the SARS-CoV-2 E protein contributes to the virus's pathogenicity. SARS-CoV-2 infects epithelia, but also cells from the innate immune response, including monocytes and alveolar macrophages. This process is critical for alterations of the immune response that are related to the deaths caused by SARS-CoV-2. Identification of E-protein targets in immune cells might offer clues to understanding how SARS-CoV-2 alters the immune response. We analyzed the interactome of the SARS-CoV-2 E protein in human monocytes. The E protein was expressed fused to a GFP tag at the amino terminal in THP-1 monocytes, and associated proteins were identified using a proteomic approach. The E-protein interactome provided 372 partners; only 8 of these harbored PDZ domains, including the cell polarity protein ZO-2, the chemoattractant IL-16, and syntenin. We addressed the expression and localization of the identified PDZ proteins along the differentiation of primary and THP-1 monocytes towards macrophages and dendritic cells. Our data highlight the importance of identifying the functions of PDZ proteins in the maintenance of immune fitness and the viral alteration of inflammatory response.


Assuntos
COVID-19 , Monócitos , Humanos , SARS-CoV-2 , Proteômica , Macrófagos , Fatores de Transcrição
3.
Cancer Immunol Immunother ; 70(11): 3277-3289, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33837851

RESUMO

BACKGROUND: Antibody-based therapies blocking the programmed cell death-1/ligand-1 (PD-1/PD-L1) axis have provided unprecedent clinical success in cancer treatment. Acquired resistance, however, frequently occurs, commonly associated with the upregulation of additional inhibitory molecules. Diacylglycerol kinase (DGK) α limits the extent of Ras activation in response to antigen recognition, and its upregulation facilitates hypofunctional, exhausted T cell states. Pharmacological DGKα targeting restores cytotoxic function of chimeric antigen receptor and CD8+ T cells isolated from solid tumors, suggesting a mechanism to reverse T cell exhausted phenotypes. Nevertheless, the contribution of DGKα downstream of the PD-1/PD-L1 inhibitory axis in human T cells and the consequences of combining DGKα and anti-PD-1/PD-L1 inhibitors are still unresolved relevant issues. MATERIALS AND METHODS: We used a human triple parameter reporter cell line to investigate DGKα contribution to the PD-1/PD-L1 inhibitory pathway. We also addressed the impact of deleting DGKα expression in the growth dynamics and systemic tumor-derived effects of a PD-1-related tumor model, the MC38 colon adenocarcinoma. RESULTS: We identify DGKα as a contributor to the PD-1/PD-L1 axis that strongly limits the Ras/ERK/AP-1 pathway. DGKα function reinforces exhausted T cell phenotypes ultimately promoting tumor growth and generalized immunosuppression. Pharmacological DGKα inhibition selectively enhances AP-1 transcription and, importantly, cooperates with antibodies blocking the PD-1/PD-L1 interrelation. CONCLUSIONS: Our results indicate that DGKα inhibition could provide an important mechanism to revert exhausted T lymphocyte phenotypes and thus favor proper anti-tumor T cell responses. The cooperative effect observed after PD-1/PD-L1 and DGKα blockade offers a promising strategy to improve the efficacy of immunotherapy in the treatment of cancer.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diacilglicerol Quinase/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/farmacologia , Ativação Linfocitária/imunologia , Neoplasias Experimentais/imunologia , Animais , Linhagem Celular , Diacilglicerol Quinase/imunologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Transdução de Sinais/efeitos dos fármacos
4.
J Immunother Cancer ; 8(2)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33246984

RESUMO

BACKGROUND: The inhibitory functions triggered by the programmed cell death-1 (PD-1) receptor following binding to its ligand (PD-L1) protect healthy organs from cytotoxic T cells, and neutralize antitumor T cell attack. Antibody-based therapies to block PD-1/PD-L1 interaction have yielded notable results, but most patients eventually develop resistance. This failure is attributed to CD8+ T cells achieving hyporesponsive states from which recovery is hardly feasible. Dysfunctional T cell phenotypes are favored by a sustained imbalance in the diacylglycerol (DAG)- and Ca2+-regulated transcriptional programs. In mice, DAG kinase ζ (DGKζ) facilitates DAG consumption, limiting T cell activation and cytotoxic T cell responses. DGKζ deficiency facilitates tumor rejection in mice without apparent adverse autoimmune effects. Despite its therapeutic potential, little is known about DGKζ function in human T cells, and no known inhibitors target this isoform. METHODS: We used a human triple parameter reporter cell line to examine the consequences of DGKζ depletion on the transcriptional restriction imposed by PD-1 ligation. We studied the effect of DGKζ deficiency on PD-1 expression dynamics, as well as the impact of DGKζ absence on the in vivo growth of MC38 adenocarcinoma cells. RESULTS: We demonstrate that DGKζ depletion enhances DAG-regulated transcriptional programs, promoting interleukin-2 production and partially counteracting PD-1 inhibitory functions. DGKζ loss results in limited PD-1 expression and enhanced expansion of cytotoxic CD8+ T cell populations. This is observed even in immunosuppressive milieus, and correlates with the reduced ability of MC38 adenocarcinoma cells to form tumors in DGKζ-deficient mice. CONCLUSIONS: Our results, which define a role for DGKζ in the control of PD-1 expression, confirm DGKζ potential as a therapeutic target as well as a biomarker of CD8+ T cell dysfunctional states.


Assuntos
Diacilglicerol Quinase/metabolismo , Interleucina-2/imunologia , Linfócitos do Interstício Tumoral/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Feminino , Humanos , Células Jurkat , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/biossíntese , Receptor de Morte Celular Programada 1/imunologia
5.
Sci Signal ; 13(627)2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32291315

RESUMO

Diacylglycerol kinases (DGKs) limit antigen receptor signaling in immune cells by consuming the second messenger diacylglycerol (DAG) to generate phosphatidic acid (PA). Here, we showed that DGKζ promotes lymphocyte function-associated antigen 1 (LFA-1)-mediated adhesion and F-actin generation at the immune synapse of B cells with antigen-presenting cells (APCs), mostly in a PA-dependent manner. Measurement of single-cell mechanical force generation indicated that DGKζ-deficient B cells exerted lower forces at the immune synapse than did wild-type B cells. Nonmuscle myosin activation and translocation of the microtubule-organizing center (MTOC) to the immune synapse were also impaired in DGKζ-deficient B cells. These functional defects correlated with the decreased ability of B cells to present antigen and activate T cells in vitro. The in vivo germinal center response of DGKζ-deficient B cells was also reduced compared with that of wild-type B cells, indicating that loss of DGKζ in B cells impaired T cell help. Together, our data suggest that DGKζ shapes B cell responses by regulating actin remodeling, force generation, and antigen uptake-related events at the immune synapse. Hence, an appropriate balance in the amounts of DAG and PA is required for optimal B cell function.


Assuntos
Linfócitos B/metabolismo , Citoesqueleto/imunologia , Diacilglicerol Quinase/imunologia , Sinapses Imunológicas/imunologia , Animais , Citoesqueleto/genética , Diacilglicerol Quinase/genética , Sinapses Imunológicas/genética , Camundongos , Camundongos Knockout
6.
EBioMedicine ; 19: 39-48, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28438506

RESUMO

Interleukin-2 and -15 drive expansion/differentiation of cytotoxic CD8+ T cells that eliminate targets via antigen-independent killing. This property is clinically relevant for the improvement of T cell-based antitumor therapies. Diacylglycerol kinase α and ζ (DGKα/ζ) metabolize the diacylglycerol generated following antigen recognition by T lymphocytes. Enhanced expression of these two lipid kinases in tumor-infiltrating CD8+ T cells promotes a hyporesponsive state that contributes to tumor immune escape. Inhibition of these two enzymes might thus be of interest for potentiating conventional antigen-directed tumor elimination. In this study, we sought to characterize the contribution of DGKα and ζ to antigen-independent cytotoxic functions of CD8+ T cells. Analysis of DGKζ-deficient mice showed an increase in bystander memory-like CD8+ T cell populations not observed in DGKα-deficient mice. We demonstrate that DGKζ limits cytokine responses in an antigen-independent manner. Cytokine-specific expansion of DGKζ-deficient CD8+ T cells promoted enhanced differentiation of innate-like cytotoxic cells in vitro, and correlated with the more potent in vivo anti-tumor responses of DGKζ-deficient mice engrafted with the murine A20 lymphoma. Our studies reveal a isoform-specific function for DGKζ downstream of IL-2/IL-15-mediated expansion of innate-like cytotoxic T cells, Pharmacological manipulation of DGKζ activity is of therapeutic interest for cytokine-directed anti-tumor treatments.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Citocinas/imunologia , Diacilglicerol Quinase/imunologia , Neoplasias/imunologia , Animais , Linhagem Celular Tumoral , Diacilglicerol Quinase/genética , Feminino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
Adv Biol Regul ; 63: 22-31, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27697466

RESUMO

Diacylglycerol kinases (DGK) are a family of enzymes that catalyze the transformation of diacylglycerol into phosphatidic acid. In T lymphocytes, DGKα and ζ limit the activation of the PLCγ/Ras/ERK axis, providing a critical checkpoint to inhibit T cell responses. Upregulation of these isoforms limits Ras activation, leading to hypo-responsive, anergic states similar to those caused by tumors. Recent studies have identified DGKα upregulation in tumor lymphocyte infiltrates, and cells from DGKα and ζ deficient mice show enhanced antitumor activity, suggesting that limitation of DAG based signals by DGK is used by tumors to evade immune attack. DGKα expression is low or even absent in other healthy cells like melanocytes, hepatocytes or neurons. Expression of this isoform, nevertheless is upregulated in melanoma, hepatocarcinoma and glioblastoma where DGKα contributes to the acquisition of tumor metastatic traits. A model thus emerges where tumor milieu fosters DGKα expression in tumors as well as in tumor infiltrating lymphocytes with opposite consequences. Here we review the mechanisms and targets that facilitate tumor "addiction" to DGKα, and discuss its relevance in the more advanced forms of cancer for tumor immune evasion. A better knowledge of this function offers a new perspective in the search of novel approaches to prevent inhibition of immune attack in cancer. Part of the failure in clinical progress may be attributed to the complexity of the tumor/T lymphocyte interaction. As they develop, tumors use a number of mechanisms to drive endogenous, tumor reactive T cells to a general state of hyporesponsiveness or anergy. A better knowledge of the molecular mechanisms that tumors use to trigger T cell anergic states will greatly help in the advance of immunotherapy research.


Assuntos
Diacilglicerol Quinase/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Linfócitos T/imunologia , Evasão Tumoral/genética , Animais , Anergia Clonal , Diacilglicerol Quinase/imunologia , Diglicerídeos/imunologia , Diglicerídeos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/imunologia , Humanos , Camundongos , Neoplasias/imunologia , Neoplasias/patologia , Ácidos Fosfatídicos/imunologia , Ácidos Fosfatídicos/metabolismo , Fosfolipase C gama/genética , Fosfolipase C gama/imunologia , Transdução de Sinais , Linfócitos T/patologia , Proteínas ras/genética , Proteínas ras/imunologia
8.
Sci Signal ; 9(459): ra127, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27999176

RESUMO

The antigen-induced formation of an immune synapse (IS) between T cells and antigen-presenting cells results in the rapid generation of the lipid second messenger diacylglycerol (DAG) in T cells. Diacylglycerol kinase ζ (DGKζ) converts DAG into phosphatidic acid (PA). Cytotoxic T lymphocytes (CTLs) from mice deficient in DGKζ have enhanced antiviral and antitumor activities, indicating that the amount of DAG controls the effectiveness of the T cell response. We characterized the second C1 domain of protein kinase Cθ (PKCθ), a DAG-binding protein that is specifically recruited to the IS, as a biological sensor to observe the generation of a DAG gradient during IS formation. In experiments with transgenic mouse CTLs expressing the OT-I T cell receptor (TCR), we showed that both strong and weak interactions between antigen and the TCR led to the rapid generation of DAG, whereas only strong interactions induced the movement of DAG-enriched organelles toward the IS. In DGKζ-deficient CTLs, antigen stimulation led to the enhanced accumulation of DAG-containing organelles at the IS; however, impaired activation of the PA effector PKCζ resulted in lack of reorientation of the microtubule-organizing center toward the IS, a process needed for effective T cell activation. Together, these data suggest that the activation of DGKζ downstream of antigen recognition provides a mechanism that ensures the activation of PA-dependent signaling as a direct result of the strength of TCR-dependent DAG mobilization.


Assuntos
Diacilglicerol Quinase/imunologia , Diglicerídeos/imunologia , Sinapses Imunológicas/imunologia , Organelas/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Animais , Diacilglicerol Quinase/genética , Diglicerídeos/genética , Ativação Enzimática/genética , Ativação Enzimática/imunologia , Humanos , Sinapses Imunológicas/genética , Células Jurkat , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Organelas/genética , Receptores de Antígenos de Linfócitos T/genética
9.
J Agric Food Chem ; 63(36): 7967-74, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26307852

RESUMO

This study assesses the impact of melatonin enriched watering on the germination of lentils (Lens culinaris L.) and kidney beans (Phaseolus vulgaris L.). The melatonin levels in lentil and bean sprouts measured by HPLC-MS/MS were more important than those found in other legumes and sprouts, being higher in lentil (1090 ng/g) than in kidney bean (529 ng/g) sprouts. This alternative germination promoted a significant increase of the development of radicles in comparison with the traditional germination. The decreases in the phenolic load were less accentuated than previously observed (lentil sprouts displayed 394 mg gallic acid equivalents (GAE)/100 g of dry weight (DW)), probably due to the protective effect of melatonin. The antioxidant capacity (oxygen radical absorbing capacity assay) increased in these sprouts, reaching 85 and 56 µmol of Trolox equivalents/g DW in lentils and beans, respectively. Hence, the melatonin-enriched foods exhibited potent free radical scavenger and antioxidant functions that may be used as a nutritional strategy to alleviate and prevent chronic and age-related diseases.


Assuntos
Lens (Planta)/química , Melatonina/análise , Phaseolus/química , Fenóis/análise , Sementes/crescimento & desenvolvimento , Antioxidantes/análise , Antioxidantes/metabolismo , Germinação , Lens (Planta)/crescimento & desenvolvimento , Lens (Planta)/metabolismo , Melatonina/metabolismo , Phaseolus/crescimento & desenvolvimento , Phaseolus/metabolismo , Fenóis/metabolismo , Sementes/química , Sementes/metabolismo
10.
J Agric Food Chem ; 62(44): 10736-43, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25310717

RESUMO

This study reports the effects of two different illumination conditions during germination (12 h light/12 h dark vs 24 h dark) in lentils (Lens culinaris L.) and kidney beans (Phaseolus vulgaris L.) on the content of melatonin and phenolic compounds, as well as the antioxidant activity. Germination led to relative increase in melatonin content and significant antioxidant activity, while the content of phenolic compounds decreased. The highest melatonin content was obtained after 6 days of germination under 24 h dark for both legumes. These germinated legume seeds with improved levels of melatonin might play a protective role against free radicals. Thus, considering the potent antioxidant activity of melatonin, these sprouts can be consumed as direct foods and be offered as preventive food strategies in combating chronic diseases through the diet.


Assuntos
Antioxidantes/química , Germinação/efeitos da radiação , Lens (Planta)/química , Melatonina/química , Phaseolus/química , Fenóis/química , Sementes/efeitos da radiação , Lens (Planta)/crescimento & desenvolvimento , Lens (Planta)/efeitos da radiação , Luz , Estrutura Molecular , Phaseolus/crescimento & desenvolvimento , Phaseolus/efeitos da radiação , Sementes/química , Sementes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA