Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
medRxiv ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38645094

RESUMO

Around 60% of individuals with neurodevelopmental disorders (NDD) remain undiagnosed after comprehensive genetic testing, primarily of protein-coding genes1. Increasingly, large genome-sequenced cohorts are improving our ability to discover new diagnoses in the non-coding genome. Here, we identify the non-coding RNA RNU4-2 as a novel syndromic NDD gene. RNU4-2 encodes the U4 small nuclear RNA (snRNA), which is a critical component of the U4/U6.U5 tri-snRNP complex of the major spliceosome2. We identify an 18 bp region of RNU4-2 mapping to two structural elements in the U4/U6 snRNA duplex (the T-loop and Stem III) that is severely depleted of variation in the general population, but in which we identify heterozygous variants in 119 individuals with NDD. The vast majority of individuals (77.3%) have the same highly recurrent single base-pair insertion (n.64_65insT). We estimate that variants in this region explain 0.41% of individuals with NDD. We demonstrate that RNU4-2 is highly expressed in the developing human brain, in contrast to its contiguous counterpart RNU4-1 and other U4 homologs, supporting RNU4-2's role as the primary U4 transcript in the brain. Overall, this work underscores the importance of non-coding genes in rare disorders. It will provide a diagnosis to thousands of individuals with NDD worldwide and pave the way for the development of effective treatments for these individuals.

3.
Nat Med ; 29(1): 180-189, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36658419

RESUMO

Pregnancy loss and perinatal death are devastating events for families. We assessed 'genomic autopsy' as an adjunct to standard autopsy for 200 families who had experienced fetal or newborn death, providing a definitive or candidate genetic diagnosis in 105 families. Our cohort provides evidence of severe atypical in utero presentations of known genetic disorders and identifies novel phenotypes and disease genes. Inheritance of 42% of definitive diagnoses were either autosomal recessive (30.8%), X-linked recessive (3.8%) or autosomal dominant (excluding de novos, 7.7%), with risk of recurrence in future pregnancies. We report that at least ten families (5%) used their diagnosis for preimplantation (5) or prenatal diagnosis (5) of 12 pregnancies. We emphasize the clinical importance of genomic investigations of pregnancy loss and perinatal death, with short turnaround times for diagnostic reporting and followed by systematic research follow-up investigations. This approach has the potential to enable accurate counseling for future pregnancies.


Assuntos
Aborto Espontâneo , Morte Perinatal , Gravidez , Humanos , Feminino , Morte Perinatal/etiologia , Autopsia , Aborto Espontâneo/genética , Diagnóstico Pré-Natal , Genômica
4.
J Med Genet ; 57(7): 454-460, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31988067

RESUMO

BACKGROUND: Pseudodiastrophic dysplasia (PDD) is a severe skeletal dysplasia associated with prenatal manifestation and early lethality. Clinically, PDD is classified as a 'dysplasia with multiple joint dislocations'; however, the molecular aetiology of the disorder is currently unknown. METHODS: Whole exome sequencing (WES) was performed on three patients from two unrelated families, clinically diagnosed with PDD, in order to identify the underlying genetic cause. The functional effects of the identified variants were characterised using primary cells and human cell-based overexpression assays. RESULTS: WES resulted in the identification of biallelic variants in the established skeletal dysplasia genes, B3GAT3 (family 1) and CANT1 (family 2). Mutations in these genes have previously been reported to cause 'multiple joint dislocations, short stature, and craniofacial dysmorphism with or without congenital heart defects' ('JDSCD'; B3GAT3) and Desbuquois dysplasia 1 (CANT1), disorders in the same nosological group as PDD. Follow-up of the B3GAT3 variants demonstrated significantly reduced B3GAT3/GlcAT-I expression. Downstream in vitro functional analysis revealed abolished biosynthesis of glycosaminoglycan side chains on proteoglycans. Functional evaluation of the CANT1 variant showed impaired nucleotidase activity, which results in inhibition of glycosaminoglycan synthesis through accumulation of uridine diphosphate. CONCLUSION: For the families described in this study, the PDD phenotype was caused by mutations in the known skeletal dysplasia genes B3GAT3 and CANT1, demonstrating the advantage of genomic analyses in delineating the molecular diagnosis of skeletal dysplasias. This finding expands the phenotypic spectrum of B3GAT3-related and CANT1-related skeletal dysplasias to include PDD and highlights the significant phenotypic overlap of conditions within the proteoglycan biosynthesis pathway.


Assuntos
Nanismo/genética , Glucuronosiltransferase/genética , Cardiopatias Congênitas/genética , Hérnia Umbilical/genética , Nucleotidases/genética , Nanismo/patologia , Feminino , Regulação da Expressão Gênica/genética , Predisposição Genética para Doença , Cardiopatias Congênitas/patologia , Hérnia Umbilical/patologia , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Fenótipo , Gravidez , Proteoglicanas , Sequenciamento do Exoma
6.
BMC Med Genet ; 11: 165, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-21092079

RESUMO

BACKGROUND: A novel phenotype consisting of cataract, mental retardation, erythematous skin rash and facial dysmorphism was recently described in an extended pedigree of Australian Aboriginal descent. Large scale chromosomal re-arrangements had previously been ruled out. We have conducted a genome-wide scan to map the linkage region in this family. METHODS: Genome-wide linkage analysis using Single Nucleotide Polymorphism (SNP) markers on the Affymetrix 10K SNP array was conducted and analysed using MERLIN. Three positional candidate genes (ZBTB17, EPHA2 and EPHB2) were sequenced to screen for segregating mutations. RESULTS: Under a fully penetrant, dominant model, the locus for this unique phenotype was mapped to chromosome 1p35.3-p36.32 with a maximum LOD score of 2.41. The critical region spans 48.7 cM between markers rs966321 and rs1441834 and encompasses 527 transcripts from 364 annotated genes. No coding mutations were identified in three positional candidate genes EPHA2, EPHB2 or ZBTB17. The region overlaps with a previously reported region for Volkmann cataract and the phenotype has similarity to that reported for 1p36 monosomy. CONCLUSIONS: The gene for this syndrome is located in a 25.6 Mb region on 1p35.3-p36.32. The known cataract gene in this region (EPHA2) does not harbour mutations in this family, suggesting that at least one additional gene for cataract is present in this region.


Assuntos
Anormalidades Múltiplas/genética , Catarata/genética , Cromossomos Humanos Par 1 , Deficiências do Desenvolvimento/genética , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Anormalidades Múltiplas/etnologia , Austrália , Catarata/etnologia , Criança , Mapeamento Cromossômico , Deficiências do Desenvolvimento/etnologia , Exantema/etnologia , Exantema/genética , Fácies , Feminino , Haplótipos , Humanos , Fatores de Transcrição Kruppel-Like/genética , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Receptor EphA2/genética , Receptor EphB2/genética , Síndrome
7.
Am J Med Genet A ; 149A(4): 633-9, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19291767

RESUMO

A novel syndrome initially presenting with cataract and developmental delay within an Indigenous Australian family is described. We present the extended four generation pedigree and describe in detail the phenotypic appearance of five clearly affected male second cousins in this family. The common features of these children include developmental delay, short stature, cortical cataract, facial dysmorphism, clinodactyly, thin hair and an erythematous skin rash. Initial inspection of the pedigree suggested an inherited disorder with possible X-linked inheritance. However, a thorough scan of the X chromosome failed to reveal linkage. This family represents a new syndrome of familial cataract, dysmorphic features, short stature and developmental delay with probable autosomal inheritance and variable expressivity.


Assuntos
Catarata/genética , Anormalidades Craniofaciais/genética , Deficiências do Desenvolvimento/genética , Displasia Ectodérmica/genética , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Pré-Escolar , Cromossomos Humanos X/genética , Feminino , Ligação Genética , Humanos , Masculino , Linhagem , Fenótipo , Austrália do Sul , Síndrome , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA