Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 14(4)2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38366577

RESUMO

High-throughput sequencing-based methods for bulked segregant analysis (BSA) allow for the rapid identification of genetic markers associated with traits of interest. BSA studies have successfully identified qualitative (binary) and quantitative trait loci (QTLs) using QTL mapping. However, most require population structures that fit the models available and a reference genome. Instead, high-throughput short-read sequencing can be combined with BSA of k-mers (BSA-k-mer) to map traits that appear refractory to standard approaches. This method can be applied to any organism and is particularly useful for species with genomes diverged from the closest sequenced genome. It is also instrumental when dealing with highly heterozygous and potentially polyploid genomes without phased haplotype assemblies and for which a single haplotype can control a trait. Finally, it is flexible in terms of population structure. Here, we apply the BSA-k-mer method for the rapid identification of candidate regions related to seed spot and seed size in diploid potato. Using a mixture of F1 and F2 individuals from a cross between 2 highly heterozygous parents, candidate sequences were identified for each trait using the BSA-k-mer approach. Using parental reads, we were able to determine the parental origin of the loci. Finally, we mapped the identified k-mers to a closely related potato genome to validate the method and determine the genomic loci underlying these sequences. The location identified for the seed spot matches with previously identified loci associated with pigmentation in potato. The loci associated with seed size are novel. Both loci are relevant in future breeding toward true seeds in potato.


Assuntos
Solanum tuberosum , Humanos , Solanum tuberosum/genética , Melhoramento Vegetal , Mapeamento Cromossômico/métodos , Locos de Características Quantitativas , Sementes/genética
2.
Curr Protoc Plant Biol ; 1(2): 431-450, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30775870

RESUMO

Establishing efficient functional genomic systems for creating and characterizing genetic variation in forest trees is challenging. Here we describe protocols for creating novel gene-dosage variation in Populus through gamma-irradiation of pollen, followed by genomic analysis to identify chromosomal regions that have been deleted or inserted in each F1 individual. Irradiated pollen is used in a controlled, interspecific cross to create F1 progeny that carry deletions and insertions of chromosomal regions. These insertions and deletions result in novel changes in gene dosage that in turn affect both qualitative and quantitative phenotypic traits. The protocols described here outline the processes involved in optimizing irradiation levels and performing controlled crosses, sowing seed and propagating seedlings, and genome-wide sequence-based analysis of deletions and insertions in the F1 progeny. The same approach could be applied to other vegetatively propagated species. © 2016 by John Wiley & Sons, Inc.

3.
PLoS One ; 10(10): e0139672, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26445462

RESUMO

Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA-genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously, using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. Our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.


Assuntos
Agrobacterium tumefaciens/genética , Arabidopsis/genética , DNA Bacteriano/análise , DNA Bacteriano/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Plantas Geneticamente Modificadas/genética , Transformação Genética , DNA de Plantas/genética , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala/economia , Mutagênese Insercional , Análise de Sequência de DNA/economia , Análise de Sequência de DNA/métodos
4.
Plant Cell ; 26(4): 1382-1397, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24728647

RESUMO

Chemical mutagenesis efficiently generates phenotypic variation in otherwise homogeneous genetic backgrounds, enabling functional analysis of genes. Advances in mutation detection have brought the utility of induced mutant populations on par with those produced by insertional mutagenesis, but systematic cataloguing of mutations would further increase their utility. We examined the suitability of multiplexed global exome capture and sequencing coupled with custom-developed bioinformatics tools to identify mutations in well-characterized mutant populations of rice (Oryza sativa) and wheat (Triticum aestivum). In rice, we identified ∼18,000 induced mutations from 72 independent M2 individuals. Functional evaluation indicated the recovery of potentially deleterious mutations for >2600 genes. We further observed that specific sequence and cytosine methylation patterns surrounding the targeted guanine residues strongly affect their probability to be alkylated by ethyl methanesulfonate. Application of these methods to six independent M2 lines of tetraploid wheat demonstrated that our bioinformatics pipeline is applicable to polyploids. In conclusion, we provide a method for developing large-scale induced mutation resources with relatively small investments that is applicable to resource-poor organisms. Furthermore, our results demonstrate that large libraries of sequenced mutations can be readily generated, providing enhanced opportunities to study gene function and assess the effect of sequence and chromatin context on mutations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA