Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 7: 13203, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27759016

RESUMO

Dynamical understanding of the Madden-Julian Oscillation (MJO) has been elusive, and predictive capabilities therefore limited. New measurements of the ocean's response to the intense surface winds and cooling by two successive MJO pulses, separated by several weeks, show persistent ocean currents and subsurface mixing after pulse passage, thereby reducing ocean heat energy available for later pulses by an amount significantly greater than via atmospheric surface cooling alone. This suggests that thermal mixing in the upper ocean from a particular pulse might affect the amplitude of the following pulse. Here we test this hypothesis by comparing 18 pulse pairs, each separated by <55 days, measured over a 33-year period. We find a significant tendency for weak (strong) pulses, associated with low (high) cooling rates, to be followed by stronger (weaker) pulses. We therefore propose that the ocean introduces a memory effect into the MJO, whereby each event is governed in part by the previous event.

3.
Nature ; 521(7550): 65-9, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25951285

RESUMO

Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis, sediment and pollutant transport and acoustic transmission; they also pose hazards for man-made structures in the ocean. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects. For over a decade, studies have targeted the South China Sea, where the oceans' most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.

4.
J Acoust Soc Am ; 117(6): 3555-65, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16018459

RESUMO

Wind and rain generated ambient sound from the ocean surface represents the background baseline of ocean noise. Understanding these ambient sounds under different conditions will facilitate other scientific studies. For example, measurement of the processes producing the sound, assessment of sonar performance, and helping to understand the influence of anthropogenic generated noise on marine mammals. About 90 buoy-months of ocean ambient sound data have been collected using Acoustic Rain Gauges in different open-ocean locations in the Tropical Pacific Ocean. Distinct ambient sound spectra for various rainfall rates and wind speeds are identified through a series of discrimination processes. Five divisions of the sound spectra associated with different sound generating mechanisms can be predicted using wind speed and rainfall rate as input variables. The ambient sound data collected from the Intertropical Convergence Zone are used to construct the prediction algorithms, and are tested on the data from the Western Pacific Warm Pool. This physically based semi-empirical model predicts the ambient sound spectra (0.5-50 kHz) at rainfall rates from 2-200 mm/h and wind speeds from 2 to 14 m/s.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA