Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39273216

RESUMO

Galectins have the potential to interact with transmembrane glycoproteins to modulate their functions. Since galectin-1 interacts with PDGF-Rß, we analyzed the effect of galectin-1 on PDGF-BB-mediated AKT signaling in primary human retinal pigment epithelial (RPE) cells and galectin-1-deficient immortalized human RPE cells (LGALS1-/-/ARPE-19) following incubation with PDGF-BB and galectin-1. Expression and localization of galectin-1, PDGF-Rß and pAKT were investigated using western blot analysis and immunohistochemical staining. Cell proliferation of RPE cells was analyzed using BrdU ELISA. Following treatment of human RPE cells with human recombinant (hr)-galectin-1 and PDGF-BB, an intense clustering of PDGF-Rß and colocalization with galectin-1 were detected. By Western blot analysis and immunocytochemistry of human RPE cells, an enhanced PDGF-BB-mediated expression of pAKT was observed, which was substantially reduced by additional incubation with hr-galectin-1. Vice versa, in LGALS1-/-/ARPE-19 cells, the PDGF-BB-induced pAKT signal was enhanced compared to wild-type cells. Furthermore, a decreased expression of PDGF-Rß in human RPE cells was observed after treatment with PDGF-BB and hr-galectin-1, while in untreated LGALS1-/-/ARPE-19 cells, its constitutive expression was increased. In addition, after treatment of RPE cells with hr-galectin-1, the PDGF-BB-induced proliferation was markedly reduced. In summary, galectin-1 has the distinct potential to reduce PDGF-mediated pAKT signaling and proliferation in human RPE cells-an effect that is most likely facilitated via a decreased expression of PDGF-Rß.


Assuntos
Becaplermina , Proliferação de Células , Galectina 1 , Proteínas Proto-Oncogênicas c-akt , Epitélio Pigmentado da Retina , Transdução de Sinais , Humanos , Galectina 1/metabolismo , Galectina 1/genética , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/citologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Becaplermina/metabolismo , Becaplermina/farmacologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Linhagem Celular , Células Epiteliais/metabolismo
3.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37628816

RESUMO

In the eye, an increase in galectin-1 is associated with various chorioretinal diseases, in which retinal pigment epithelium (RPE) cells play a crucial role in disease development and progression. Since little is known about the function of endogenous galectin-1 in these cells, we developed a galectin-1-deficient immortalized RPE cell line (ARPE-19-LGALS1-/-) using a sgRNA/Cas9 all-in-one expression vector and investigated its cell biological properties. Galectin-1 deficiency was confirmed by Western blot analysis and immunocytochemistry. Cell viability and proliferation were significantly decreased in ARPE-19-LGALS1-/- cells when compared to wild-type controls. Further on, an increased attachment of galectin-1-deficient RPE cells was observed by cell adhesion assay when compared to control cells. The diminished viability and proliferation, as well as the enhanced adhesion of galectin-1-deficient ARPE-19 cells, could be blocked, at least in part, by the additional treatment with human recombinant galectin-1. In addition, a significantly reduced migration was detected in ARPE-19-LGALS1-/- cells. In comparison to control cells, galectin-1-deficient RPE cells had enhanced expression of sm-α-actin and N-cadherin, whereas expression of E-cadherin showed no significant alteration. Finally, a compensatory expression of galectin-8 mRNA was observed in ARPE-19-LGALS1-/- cells. In conclusion, in RPE cells, endogenous galectin-1 has crucial functions for various cell biological processes, including viability, proliferation, migration, adherence, and retaining the epithelial phenotype.


Assuntos
Galectina 1 , RNA Guia de Sistemas CRISPR-Cas , Humanos , Galectina 1/genética , Actinas , Células Epiteliais , Pigmentos da Retina
4.
Neurosurg Rev ; 45(1): 585-593, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34043110

RESUMO

Intraoperative neurophysiological monitoring of transcranial motor-evoked potentials (tcMEPs) may fail to produce a serviceable signal due to displacements by mass lesions. We hypothesize that navigated placement of stimulation electrodes yields superior potential quality for tcMEPs compared to the conventional 10-20 placement. We prospectively included patients undergoing elective cranial surgery with intraoperative monitoring of tcMEPs. In addition to electrode placement as per the 10-20 system, an electrode pair was placed at a location corresponding to the hand knob area of the primary motor cortex (M1) for every patient, localized by a navigation system during surgical setup. Twenty-five patients undergoing elective navigated surgery for intracranial tumors (n = 23; 92%) or vascular lesions (n = 2; 8%) under intraoperative monitoring of tcMEPs were included between June and August 2019 at our department. Stimulation and recording of tcMEPs was successful in every case for the navigated electrode pair, while stimulation by 10-20 electrodes did not yield baseline tcMEPs in two cases (8%) with anatomical displacement of the M1. While there was no significant difference between baseline amplitudes, mean potential quality decreased significantly by 88.3 µV (- 13.5%) for the 10-20 electrodes (p = 0.004) after durotomy, unlike for the navigated electrodes (- 28.6 µV [- 3.1%]; p = 0.055). For patients with an anatomically displaced M1, the navigated tcMEPs declined significantly less after durotomy (- 3.6% vs. 10-20: - 23.3%; p = 0.038). Navigated placement of tcMEP electrodes accounts for interindividual anatomical variance and pathological dislocation of the M1, yielding more consistent potentials and reliable potential quality.


Assuntos
Monitorização Neurofisiológica Intraoperatória , Estimulação Transcraniana por Corrente Contínua , Eletrodos , Potencial Evocado Motor , Humanos , Procedimentos Neurocirúrgicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA