Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29901823

RESUMO

Plants employ tight genetic control to integrate intrinsic growth signals and environmental cues to enable organs to grow to a defined size. Many genes contributing to cell proliferation and/or cell expansion, and consequently organ size control, have been identified, but the regulatory pathways are poorly understood. Here we have characterized a cucumber littleleaf (ll) mutant which exhibits smaller organ sizes but more lateral branches than the wild type. The small organ size in ll was due to a reduction of both cell number and cell size. Quantitative trait locus (QTL) analyses revealed co-localization of major-effect QTLs for fruit size, fruit and seed weight, as well as number of lateral branches, with the LL locus indicating pleiotropic effects of the ll mutation. We demonstrate that LL is an ortholog of Arabidopsis STERILE APETALA (SAP) encoding a WD40 repeat domain-containing protein; the mutant protein differed from the wild type by a single amino acid substitution (W264G) in the second WD40 repeat. W264 was conserved in 34 vascular plant genomes examined. Phylogenetic analysis suggested that LL originated before the emergence of flowering plants but was lost in the grass genome lineage. The function of LL in organ size control was confirmed by its overexpression in transgenic cucumbers and ectopic expression in Arabidopsis. Transcriptome profiling in LL and ll bulks revealed a complex regulatory network for LL-mediated organ size variation that involves several known organ size regulators and associated pathways. The data support LL as an important player in organ size control and lateral branch development in cucumber.

2.
Theor Appl Genet ; 129(12): 2387-2401, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27581542

RESUMO

KEY MESSAGE: Through a novel phenotyping method, four QTLs were consistently associated with increased parthenocarpic fruit set in North American processing cucumber that accounted for over 75 % of observed phenotypic variation. Parthenocarpy is a desirable trait with potential for increasing yield and quality in processing cucumber production. Although many successful parthenocarpic fresh market cucumber varieties have been developed, the genetic and molecular mechanisms behind parthenocarpic expression in cucumber remain largely unknown. Since parthenocarpy is an important yield component, it is difficult to separate the true parthenocarpic character from other yield related traits. In the present study, we developed a novel phenotypic approach for parthenocarpic fruit set focusing on early fruit development. Two hundred and five F3 families derived from a cross between the highly parthenocarpic line 2A and low parthenocarpic line Gy8 were phenotypically evaluated in three greenhouse experiments. Seven QTLs associated with parthenocarpic fruit set were detected. Among them, one each on chromosomes 5 and 7 (parth5.1 and parth7.1) and two on chromosome 6 (parth6.1 and parth6.2) were consistently identified in all experiments, but their relative contribution to the total phenotypic variation was dependent on plant growth stages. While each of the four QTLs had almost equal contribution to the expression of the trait at commercial harvest stage, parth7.1 played an important role in early parthenocarpic fruit set. The results suggested that parthenocarpic fruit set can be accurately evaluated with as few as 20 nodes of growth. The QTLs identified in this study for parthenocarpic fruit set are a valuable resource for cucumber breeders interested in developing parthenocarpic cultivars and to researchers interested in the genetic and molecular mechanisms of parthenocarpic fruit set.


Assuntos
Cucumis sativus/genética , Frutas/genética , Partenogênese/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Cruzamentos Genéticos , Ligação Genética , Padrões de Herança , Modelos Genéticos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA