Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14996, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951158

RESUMO

In this work, we combine the advantages of virtual Small Angle Neutron Scattering (SANS) experiments carried out by Monte Carlo simulations with the recent advances in computer vision to generate a tool that can assist SANS users in small angle scattering model selection. We generate a dataset of almost 260.000 SANS virtual experiments of the SANS beamline KWS-1 at FRM-II, Germany, intended for Machine Learning purposes. Then, we train a recommendation system based on an ensemble of Convolutional Neural Networks to predict the SANS model from the two-dimensional scattering pattern measured at the position-sensitive detector of the beamline. The results show that the CNNs can learn the model prediction task, and that this recommendation system has a high accuracy in the classification task on 46 different SANS models. We also test the network with real data and explore the outcome. Finally, we discuss the reach of counting with the set of virtual experimental data presented here, and of such a recommendation system in the SANS user data analysis procedure.

2.
Small Methods ; 5(2): e2000707, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34927893

RESUMO

Polymeric carbon nitride (PCN) is a promising class of materials for solar-to-chemical energy conversion. The increase of the photocatalytic activity of PCN is often achieved by the incorporation of heteroatoms, whose impact on the electronic structure of PCN remains poorly explored. This work reveals that the local electronic structure of PCN is strongly altered by doping with sulfur and iron using X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). From XAS at the carbon and nitrogen K-edges, sulfur atoms are found to mostly affect carbon atoms, in contrast to iron doping mostly altering nitrogen sites. In RIXS at the nitrogen K-edge, a vibrational progression, affected by iron doping, is evidenced, which is attributed to a vibronic coupling between excited electrons in nitrogen atoms and C-N stretching modes in PCN heterocycling rings. This work opens new perspectives for the characterization of vibronic coupling in polymeric photocatalysts.

3.
J Synchrotron Radiat ; 27(Pt 1): 238-249, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31868758

RESUMO

The performance of the recently commissioned spectrometer PEAXIS for resonant inelastic soft X-ray scattering (RIXS) and X-ray photoelectron spectroscopy and its hosting beamline U41-PEAXIS at the BESSY II synchrotron are characterized. The beamline provides linearly polarized light from 180 eV to 1600 eV allowing for RIXS measurements in the range 200-1200 eV. The monochromator optics can be operated in different configurations to provide either high flux with up to 1012 photons s-1 within the focal spot at the sample or high energy resolution with a full width at half maximum of <40 meV at an incident photon energy of ∼400 eV. The measured total energy resolution of the RIXS spectrometer is in very good agreement with theoretically predicted values obtained by ray-tracing simulations. PEAXIS features a 5 m-long RIXS spectrometer arm that can be continuously rotated about the sample position by 106° within the horizontal photon scattering plane, thus enabling the study of momentum-transfer-dependent excitations. Selected scientific examples are presented to demonstrate the instrument capabilities, including measurements of excitations in single-crystalline NiO and in liquid acetone employing a fluid cell sample manipulator. Planned upgrades of the beamline and the RIXS spectrometer to further increase the energy resolution to ∼100 meV at 1000 eV incident photon energy are discussed.

4.
Rev Sci Instrum ; 84(5): 055106, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23742588

RESUMO

We here describe the result of simulations of 15 generic neutron instruments for the long-pulsed European Spallation Source. All instruments have been simulated for 20 different settings of the source time structure, corresponding to pulse lengths between 1 ms and 2 ms; and repetition frequencies between 10 Hz and 25 Hz. The relative change in performance with time structure is given for each instrument, and an unweighted average is calculated. The performance of the instrument suite is proportional to (a) the peak flux and (b) the duty cycle to a power of approximately 0.3. This information is an important input to determining the best accelerator parameters. In addition, we find that in our simple guide systems, most neutrons reaching the sample originate from the central 3-5 cm of the moderator. This result can be used as an input in later optimization of the moderator design. We discuss the relevance and validity of defining a single figure-of-merit for a full facility and compare with evaluations of the individual instrument classes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA