Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36832215

RESUMO

Age-related macular degeneration is a visual disorder caused by abnormalities in a part of the eye's retina and is a leading source of blindness. The correct detection, precise location, classification, and diagnosis of choroidal neovascularization (CNV) may be challenging if the lesion is small or if Optical Coherence Tomography (OCT) images are degraded by projection and motion. This paper aims to develop an automated quantification and classification system for CNV in neovascular age-related macular degeneration using OCT angiography images. OCT angiography is a non-invasive imaging tool that visualizes retinal and choroidal physiological and pathological vascularization. The presented system is based on new retinal layers in the OCT image-specific macular diseases feature extractor, including Multi-Size Kernels ξcho-Weighted Median Patterns (MSKξMP). Computer simulations show that the proposed method: (i) outperforms current state-of-the-art methods, including deep learning techniques; and (ii) achieves an overall accuracy of 99% using ten-fold cross-validation on the Duke University dataset and over 96% on the noisy Noor Eye Hospital dataset. In addition, MSKξMP performs well in binary eye disease classifications and is more accurate than recent works in image texture descriptors.

2.
Diagnostics (Basel) ; 13(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36766672

RESUMO

The World Health Organization estimates that there were around 10 million deaths due to cancer in 2020, and lung cancer was the most common type of cancer, with over 2.2 million new cases and 1.8 million deaths. While there have been advances in the diagnosis and prediction of lung cancer, there is still a need for new, intelligent methods or diagnostic tools to help medical professionals detect the disease. Since it is currently unable to detect at an early stage, speedy detection and identification are crucial because they can increase a patient's chances of survival. This article focuses on developing a new tool for diagnosing lung tumors and providing thermal touch feedback using virtual reality visualization and thermal technology. This tool is intended to help identify and locate tumors and measure the size and temperature of the tumor surface. The tool uses data from CT scans to create a virtual reality visualization of the lung tissue and includes a thermal display incorporated into a haptic device. The tool is also tested by touching virtual tumors in a virtual reality application. On the other hand, thermal feedback could be used as a sensory substitute or adjunct for visual or tactile feedback. The experimental results are evaluated with the performance comparison of different algorithms and demonstrate that the proposed thermal model is effective. The results also show that the tool can estimate the characteristics of tumors accurately and that it has the potential to be used in a virtual reality application to "touch" virtual tumors. In other words, the results support the use of the tool for diagnosing lung tumors and providing thermal touch feedback using virtual reality visualization, force, and thermal technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA