Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(8)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37623620

RESUMO

Candida auris is a globally emerging fungal pathogen that is associated with healthcare-related infections. The accurate and rapid detection of C. auris is crucial for effective infection prevention, control, and patient management. This study aimed to validate the analytical and diagnostic performance of the DiaSorin Molecular C. auris Detection Kit. The analytical specificity, sensitivity, and reproducibility of the assay were evaluated. The limit of detection (LOD) was determined to be 266 CFU/µL using the ZeptoMetrix Candida auris Z485 strain and standard calibration curves. The assay demonstrated high analytical specificity and showed no amplification against a diverse panel of bacteria and fungi. Clinical validation was conducted using deidentified residual axillary/groin surveillance culture specimens from C. auris culture-positive and culture-negative patients. The DiaSorin Molecular Detection Kit exhibited 100% agreement in sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) when compared to cultures coupled with MALDI-TOF identification. Intra- and inter-reproducibility testing demonstrated consistent and reliable diagnostic performance. This validated assay offers rapid and accurate detection of C. auris, facilitating timely implementation of infection control measures and appropriate patient care. The DiaSorin Molecular C. auris Detection Kit has the potential to aid in controlling the outbreaks caused by this emerging fungal pathogen. Providing a reliable diagnostic tool can contribute to the effective management and containment of C. auris infections in healthcare settings and ultimately improve patient outcomes.

2.
Emerg Microbes Infect ; 12(1): e2192830, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36927408

RESUMO

Monkeypox (MPOX) is a zoonotic disease endemic to regions of Central/Western Africa. The geographic endemicity of MPV has expanded, broadening the human-monkeypox virus interface and its potential for spillover. Since May 2022, a large multi-country MPV outbreak with no proven links to endemic countries has originated in Europe and has rapidly expanded around the globe, setting off genomic surveillance efforts. Here, we conducted a genomic analysis of 23 MPV-infected patients from New York City during the early outbreak, assessing the phylogenetic relationship of these strains against publicly available MPV genomes. Additionally, we compared the genomic sequences of clinical isolates versus culture-passaged samples from a subset of samples. Phylogenetic analysis revealed that MPV genomes included in this study cluster within the B.1 lineage (Clade IIb), with some of the samples displaying further differentiation into five different sub-lineages of B.1. Mutational analysis revealed 55 non-synonymous polymorphisms throughout the genome, with some of these mutations located in critical regions required for viral multiplication, structural and assembly functions, as well as the target region for antiviral treatment. In addition, we identified a large majority of polymorphisms associated with GA > AA and TC > TT nucleotide replacements, suggesting the action of human APOBEC3 enzyme. A comparison between clinical isolates and cell culture-passaged samples failed to reveal any difference. Our results provide a first glance at the mutational landscape of early MPV-2022 (B.1) circulating strains in NYC.


Assuntos
Monkeypox virus , Mpox , Humanos , Monkeypox virus/genética , Filogenia , Cidade de Nova Iorque/epidemiologia , Mpox/epidemiologia , Surtos de Doenças
3.
J Med Virol ; 95(1): e28247, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36271493

RESUMO

Monkeypox virus (MPXV) is a zoonotic orthopoxvirus within the Poxviridae family. MPXV is endemic to Central and West Africa. However, the world is currently witnessing an international outbreak with no clear epidemiological links to travel or animal exposure and with ever-increasing numbers of reported cases worldwide. Here, we evaluated and validated a new, sensitive, and specific real-time PCR-assay for MPXV diagnosis in humans and compare the performance of this novel assay against a Food & Drug Administration-cleared pan-Orthopox RT-PCR assay. We determined specificity, sensitivity, and analytic performance of the PKamp™ Monkeypox Virus RT-PCR assay targeting the viral F3L-gene. In addition, we further evaluated MPXV-PCR-positive specimens by viral culture, electron microscopy, and viral inactivation assays. The limit of detection was established at 7.2 genome copies/reaction, and MPXV was successfully identified in 20 clinical specimens with 100% correlation against the reference method with 100% sensitivity and specificity. Our results demonstrated the validity of this rapid, robust, and reliable RT-PCR assay for specific and accurate diagnosis of MPXV infection in human specimens collected both as dry swabs and in viral transport media. This assay has been approved by NYS Department of Health for clinical use.


Assuntos
Monkeypox virus , Mpox , Animais , Humanos , Monkeypox virus/genética , Mpox/epidemiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA