Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Dev Cell ; 59(1): 33-47.e5, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38101412

RESUMO

Aging is a risk factor for disease via increased susceptibility to infection, decreased ability to maintain homeostasis, inefficiency in combating stress, and decreased regenerative capacity. Multiple diseases, including urinary tract infection (UTI), are more prevalent with age; however, the mechanisms underlying the impact of aging on the urinary tract mucosa and the correlation between aging and disease remain poorly understood. Here, we show that, relative to young (8-12 weeks) mice, the urothelium of aged (18-24 months) female mice accumulates large lysosomes with reduced acid phosphatase activity and decreased overall autophagic flux in the aged urothelium, indicative of compromised cellular homeostasis. Aged bladders also exhibit basal accumulation of reactive oxygen species (ROS) and a dampened redox response, implying heightened oxidative stress. Furthermore, we identify a canonical senescence-associated secretory phenotype (SASP) in the aged urothelium, along with continuous NLRP3-inflammasome- and Gasdermin-D-dependent pyroptotic cell death. Consequently, aged mice chronically exfoliate urothelial cells, further exacerbating age-related urothelial dysfunction. Upon infection with uropathogenic E. coli, aged mice harbor increased bacterial reservoirs and are more prone to spontaneous recurrent UTI. Finally, we discover that treatment with D-mannose, a natural bioactive monosaccharide, rescues autophagy flux, reverses the SASP, and mitigates ROS and NLRP3/Gasdermin/interleukin (IL)-1ß-driven pyroptotic epithelial cell shedding in aged mice. Collectively, our results demonstrate that normal aging affects bladder physiology, with aging alone increasing baseline cellular stress and susceptibility to infection, and suggest that mannose supplementation could serve as a senotherapeutic to counter age-associated urothelial dysfunction.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR , Infecções Urinárias , Camundongos , Feminino , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Bexiga Urinária/metabolismo , Bexiga Urinária/microbiologia , Bexiga Urinária/patologia , Manose/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Escherichia coli/metabolismo , Urotélio/metabolismo , Urotélio/microbiologia , Interleucina-1beta , Gasderminas , Infecções Urinárias/metabolismo , Infecções Urinárias/microbiologia , Infecções Urinárias/patologia , Senescência Celular
2.
mBio ; 14(4): e0092523, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37417745

RESUMO

Macrophages are innate immune cells that patrol tissues and are the first responders to detect infection. They orchestrate the host immune response in eliminating invading pathogens and the subsequent transition from inflammation to tissue repair. Macrophage dysfunction contributes to age-related pathologies, including low-grade inflammation in advanced age that is termed "inflammaging." Our laboratory has previously identified that macrophage expression of a fatty acid desaturase, stearoyl-CoA desaturase 2 (SCD2), declines with age. Herein, we delineate the precise cellular effects of SCD2 deficiency in murine macrophages. We found that deletion of Scd2 from macrophages dysregulated basal and bacterial lipopolysaccharide (LPS)-stimulated transcription of numerous inflammation-associated genes. Specifically, deletion of Scd2 from macrophages decreased basal and LPS-induced expression of Il1b transcript that corresponded to decreased production of precursor IL1B protein and release of mature IL1B. Furthermore, we identified disruptions in autophagy and depletion of unsaturated cardiolipins in SCD2-deficient macrophages. To assess the functional relevance of SCD2 in the macrophage response to infection, we challenged SCD2-deficient macrophages with uropathogenic Escherichia coli and found that there was impaired clearance of intracellular bacteria. This increased burden of intracellular bacteria was accompanied by increased release of pro-inflammatory cytokines IL6 and TNF but decreased IL1B. Taken together, these results indicate that macrophage expression of Scd2 is necessary for maintaining the macrophage response to inflammatory stimuli. This link between fatty acid metabolism and fundamental macrophage effector functions may potentially be relevant to diverse age-related pathologies. IMPORTANCE Macrophages are immune cells that respond to infection, but their dysfunction is implicated in many age-related diseases. Recent evidence showed that macrophage expression of a fatty acid enzyme, stearoyl-CoA desaturase 2, declines in aged organisms. In this work, we characterize the effects when stearoyl-CoA desaturase 2 is deficient in macrophages. We identify aspects of the macrophage inflammatory response to infection that may be affected when expression of a key fatty acid enzyme is decreased, and these findings may provide cellular insight into how macrophages contribute to age-related diseases.


Assuntos
Lipopolissacarídeos , Estearoil-CoA Dessaturase , Animais , Camundongos , Sequência de Bases , Ácidos Graxos/metabolismo , Inflamação/genética , Macrófagos/metabolismo , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo
3.
Res Sq ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37333312

RESUMO

MV140 is a mucosal vaccine of inactivated whole bacteria (E. coli, K. pneumoniae, E. faecalis, P. vulgaris) with clinical efficacy against recurrent urinary tract infections (UTIs). Here, MV140 was evaluated in a murine model of acute uropathogenic E. coli (UPEC)-induced UTI using the UTI89 strain. MV140 vaccination resulted in UPEC clearance, concomitant with increased influx of myeloid cells in urine, CD4+ T cells in the bladder, and a systemic adaptive immune response to both MV140-containing E. coli and UTI89.

4.
J Urol ; 209(5): 928-936, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36715657

RESUMO

PURPOSE: We identify correlates and clinical outcomes of cystitis cystica, a poorly understood chronic inflammatory bladder change, in women with recurrent urinary tract infections. MATERIALS AND METHODS: A retrospective, observational cohort of women with recurrent urinary tract infections who underwent cystoscopy (n=138) from 2015 to 2018 were identified using electronic medical records. Cystitis cystica status was abstracted from cystoscopy reports and correlations were identified by logistic regression. Urinary tract infection-free survival time associated with cystitis cystica was evaluated by Cox proportional hazards regression. Exact logistic regression was used to identify factors associated with changes to cystitis cystica lesions on repeat cystoscopy. Biopsies of cystitis cystica lesions were examined by routine histology and immunofluorescence. RESULTS: Fifty-three patients (38%) had cystitis cystica on cystoscopy. Cystitis cystica was associated with postmenopausal status (OR: 5.53, 95% CI: 1.39-37.21), pelvic floor myofascial pain (6.82, 1.78-45.04), having ≥4 urinary tract infections in the past year (2.28, 1.04-5.09), and a shorter time to next urinary tract infection (HR: 1.54, 95% CI: 1.01-2.35). Forty-two patients (82%) demonstrated improvement or resolution of lesions. Ten/11 (91%) biopsied cystitis cystica lesions were tertiary lymphoid tissue with germinal centers and resembled follicular cystitis. CONCLUSIONS: Cystitis cystica lesions were associated with postmenopausal status, pelvic floor myofascial pain, and number of urinary tract infections in the prior year and predicted worse recurrent urinary tract infection outcomes. Cystitis cystica lesions are tertiary lymphoid tissue/follicular cystitis that may improve or resolve over time with treatment. Identifying cystitis cystica in recurrent urinary tract infection patients may be useful in informing future urinary tract infection risk and tailoring appropriate treatment strategies.


Assuntos
Cistite , Infecções Urinárias , Feminino , Humanos , Cistite/complicações , Cistite/tratamento farmacológico , Cistite/patologia , Tecido Linfoide/patologia , Dor/patologia , Pós-Menopausa , Estudos Retrospectivos , Bexiga Urinária/patologia , Infecções Urinárias/etiologia , Infecções Urinárias/complicações
5.
Dev Biol ; 493: 29-39, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36368522

RESUMO

A global increase in older individuals creates an increasing demand to understand numerous healthcare challenges related to aging. This population is subject to changes in tissue physiology and the immune response network. Older individuals are particularly susceptible to infectious diseases, with one of the most common being urinary tract infections (UTIs). Postmenopausal and older women have the highest risk of recurrent UTIs (rUTIs); however, why rUTIs become more frequent after menopause and during old age is incompletely understood. This increased susceptibility and severity among older individuals may involve functional changes to the immune system with age. Aging also has substantial effects on the epithelium and the immune system that led to impaired protection against pathogens, yet heightened and prolonged inflammation. How the immune system and its responses to infection changes within the bladder mucosa during aging has largely remained poorly understood. In this review, we highlight our understanding of bladder innate and adaptive immunity and the impact of aging and hormones and hormone therapy on bladder epithelial homeostasis and immunity. In particular, we elaborate on how the cellular and molecular immune landscape within the bladder can be altered during aging as aged mice develop bladder tertiary lymphoid tissues (bTLT), which are absent in young mice leading to profound age-associated change to the immune landscape in bladders that might drive the significant increase in UTI susceptibility. Knowledge of host factors that prevent or promote infection can lead to targeted treatment and prevention regimens. This review also identifies unique host factors to consider in the older, female host for improving rUTI treatment and prevention by dissecting the age-associated alteration of the bladder mucosal immune system.


Assuntos
Infecções Urinárias , Sistema Urinário , Feminino , Camundongos , Animais , Bexiga Urinária , Envelhecimento , Homeostase , Imunidade Inata
6.
Female Pelvic Med Reconstr Surg ; 28(6): e205-e210, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35536668

RESUMO

IMPORTANCE: Antibiotics are commonly used to treat and prevent urinary tract infection (UTI), but resistance is growing. Nonantibiotic prophylaxis such as methenamine hippurate (MH) shows clinical promise, but its impact on bladder factors influencing recurrent UTIs (rUTIs) is not well described. OBJECTIVE: The aim of the study was to examine the effect of MH on bladder inflammation and barrier function in aged mice and women with rUTI. STUDY DESIGN: This study included urine samples from an experimental study involving aged female mice with and without methenamine treatment as well as women with rUTI who received either no prophylaxis, MH alone, vaginal estrogen therapy and/or d-mannose alone, or MH in addition to vaginal estrogen therapy and/or d-mannose. We performed a comprehensive cytopathological analysis, which included enzyme-linked immunosorbent assay for immunoglobulin A (IgA), interleukin 6 (in human samples), and fluorescein isothiocyanate-conjugated-dextran permeability assay (in mice) to assess for urothelial permeability. RESULTS: In the aged mice model, there was a decreased urothelial permeability (as seen by retention of fluorescein isothiocyanate-conjugated-dextran fluorescence in superficial cells) and increased urinary IgA in mice treated with MH compared with controls. There was no significant difference in urothelial shedding (P > 0.05). In human samples, there was significantly increased urinary IgA in those taking MH alone compared with no prophylaxis (830.1 vs 540.1 ng/mL, P = 0.04), but no significant difference in interleukin 6. CONCLUSIONS: Methenamine hippurate seems to enhance barrier function as evidenced by decreased urothelial permeability and increased urinary IgA levels, without worsening inflammation. This may reflect another beneficial mechanism by which MH helps prevent rUTI.


Assuntos
Cistite , Infecções Urinárias , Animais , Cistite/tratamento farmacológico , Dextranos/uso terapêutico , Estrogênios , Feminino , Fluoresceínas/uso terapêutico , Hipuratos , Humanos , Imunoglobulina A/uso terapêutico , Interleucina-6/uso terapêutico , Isotiocianatos/uso terapêutico , Manose/uso terapêutico , Metenamina/análogos & derivados , Metenamina/uso terapêutico , Camundongos , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/prevenção & controle
7.
Mucosal Immunol ; 13(6): 908-918, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32366865

RESUMO

Aging has multifaceted effects on the immune system, but how aging affects tissue-specific immunity is not well-defined. Bladder diseases characterized by chronic inflammation are highly prevalent in older women, but mechanisms by which aging promotes these pathologies remain unknown. Tissue transcriptomics of unperturbed, young and aged bladders identified a highly altered immune landscape as a fundamental feature of the aging female bladder. Detailed mapping of immune cells using single cell RNA-sequencing revealed novel subsets of macrophages and dendritic cells and unique changes to the immune repertoire in the aged bladder. B and T cells are highly enriched in aged bladders and spontaneously form organized bladder tertiary lymphoid tissues (bTLTs). Naïve, activated, and germinal center B cells and IgA+ plasma cells are found within bTLT and associated with increased urinary IgA concentrations. bTLTs form with increasing age and their formation is dependent on TNFα. Microbiota are not required to form bTLT, as aged germfree mice also harbor them. Thus, bTLTs require age-dependent TNFα but are independent of the microbiota. Our results indicate that chronic, age-associated inflammation underlies a fundamental alteration to the bladder and establishes a resource for further investigation of the bladder immune system in homeostasis, aging, and disease.


Assuntos
Envelhecimento/fisiologia , Linfócitos B/imunologia , Linfócitos T/imunologia , Estruturas Linfoides Terciárias/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Bexiga Urinária/fisiologia , Animais , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota/imunologia , Análise de Célula Única , Fator de Necrose Tumoral alfa/genética
8.
Autophagy ; 15(3): 527-542, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30335568

RESUMO

50% of Caucasians carry a Thr300Ala variant (T300A) in the protein encoded by the macroautophagy/autophagy gene ATG16L1. Here, we show that the T300A variant confers protection against urinary tract infections (UTIs), the most common infectious disease in women. Using knockin mice carrying the human T300A variant, we show that the variant limits the UTI-causing bacteria, uropathogenic Escherichia coli (UPEC), from establishing persistent intracellular reservoirs, which can seed UTI recurrence. This phenotype is recapitulated in mice lacking Atg16l1 or Atg7 exclusively in the urothelium. We further show that mice with the T300A variant exhibit urothelial cellular abnormalities, including vesicular congestion and aberrant accumulation of UPK (uroplakin) proteins. Importantly, presence of the T300A variant in humans is associated with similar urothelial architectural abnormalities, indicating an evolutionarily conserved impact. Mechanistically, we show that the reduced bacterial persistence is independent of basal autophagic flux or proinflammatory cytokine responses and does not involve Atg14 or Epg5. However, the T300A variant is associated with increased expression of the small GTPase Rab33b; RAB33B interacts with ATG16L1, as well as other secretory RABs, RAB27B and RAB11A, important for UPEC exocytosis from the urothelium. Finally, inhibition of secretory RABs in bladder epithelial cells increases intracellular UPEC load. Together, our results reveal that UPEC selectively utilize genes important for autophagosome formation to persist in the urothelium, and that the presence of the T300A variant in ATG16L1 is associated with changes in urothelial vesicle trafficking, which disrupts the ability of UPEC to persist, thereby limiting the risk of recurrent UTIs. Abbreviations: 3-PEHPC: 3-pyridinyl ethylidene hydroxyl phosphonocarboxylate; ATG: autophagy; ATG16L1: autophagy related 16 like 1; BECs: bladder epithelial cells; dpi: days post infection; hpi: hours post infection; IF: immunofluorescence; IL1B: interleukin 1 beta; IL6: interleukin 6; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MVB: multivesicular bodies; T300A: Thr300Ala; TNF: tumor necrosis factor; QIR(s): quiescent intracellular reservoir(s); siRNA: short interfering RNA; UPEC: uropathogenic Escherichia coli; UTI(s): urinary tract infection(s); TEM: transmission electron microscopy; WT: wild type.


Assuntos
Autofagia/genética , Infecções por Escherichia coli/metabolismo , Infecções Urinárias/metabolismo , Escherichia coli Uropatogênica , Urotélio/microbiologia , Animais , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Linhagem Celular , Células Epiteliais/metabolismo , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Feminino , Variação Genética , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Corpos Multivesiculares/genética , Corpos Multivesiculares/microbiologia , Corpos Multivesiculares/patologia , Bexiga Urinária/microbiologia , Infecções Urinárias/genética , Infecções Urinárias/microbiologia , Infecções Urinárias/patologia , Uroplaquinas/metabolismo , Urotélio/citologia , Urotélio/metabolismo , Urotélio/ultraestrutura , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
9.
EBioMedicine ; 32: 9-20, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29903570

RESUMO

Macrophage aging is pathogenic in numerous diseases, including age-related macular degeneration (AMD), a leading cause of blindness in older adults. Although prior studies have explored the functional consequences of macrophage aging, less is known about its cellular basis or what defines the transition from physiologic aging to disease. Here, we show that despite their frequent self-renewal, macrophages from old mice exhibited numerous signs of aging, such as impaired oxidative respiration. Transcriptomic profiling of aged murine macrophages revealed dysregulation of diverse cellular pathways, especially in cholesterol homeostasis, that manifested in altered oxysterol signatures. Although the levels of numerous oxysterols in human peripheral blood mononuclear cells and plasma exhibited age-associated changes, plasma 24-hydroxycholesterol levels were specifically associated with AMD. These novel findings demonstrate that oxysterol levels can discriminate disease from physiologic aging. Furthermore, modulation of cholesterol homeostasis may be a novel strategy for treating age-associated diseases in which macrophage aging is pathogenic.


Assuntos
Envelhecimento/sangue , Colesterol/sangue , Degeneração Macular/sangue , Oxisteróis/sangue , Envelhecimento/patologia , Animais , Modelos Animais de Doenças , Humanos , Leucócitos Mononucleares/patologia , Metabolismo dos Lipídeos/fisiologia , Macrófagos/metabolismo , Macrófagos/patologia , Degeneração Macular/patologia , Camundongos , Estresse Oxidativo
11.
Artigo em Inglês | MEDLINE | ID: mdl-24533284

RESUMO

The current pharmacopeia to treat the lethal human and animal diseases caused by the protozoan parasite Trypanosoma brucei remains limited. The parasite's ability to undergo antigenic variation represents a considerable barrier to vaccine development, making the identification of new drug targets extremely important. Recent studies have demonstrated that fatty acid synthesis is important for growth and virulence of Trypanosoma brucei brucei, suggesting this pathway may have therapeutic potential. The first committed step of fatty acid synthesis is catalyzed by acetyl-CoA carboxylase (ACC), which is a known target of (-)-epigallocatechin-3-gallate (EGCG), an active polyphenol compound found in green tea. EGCG exerts its effects on ACC through activation of AMP-dependent protein kinase, which phosphorylates and inhibits ACC. We found that EGCG inhibited TbACC activity with an EC50 of 37 µM and 55 µM for bloodstream form and procyclic form lysates, respectively. Treatment with 100 µM EGCG induced a 4.7- and 1.7- fold increase in TbACC phosphorylation in bloodstream form and procyclic lysates. EGCG also inhibited the growth of bloodstream and procyclic parasites in culture, with a 48 h EC50 of 33 µM and 27 µM, respectively, which is greater than the EGCG plasma levels typically achievable in humans through oral dosing. Daily intraperitoneal administration of EGCG did not reduce the virulence of an acute mouse model of T. b. brucei infection. These data suggest a reduced potential for EGCG to treat T. brucei infections, but suggest that EGCG may prove to be useful as a tool to probe ACC regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA