Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(8)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37627672

RESUMO

Awareness of the need for surveillance of antimicrobial resistance (AMR) in water environments is growing, but there is uncertainty regarding appropriate monitoring targets. Adapting culture-based fecal indicator monitoring to include antibiotics in the media provides a potentially low-tech and accessible option, while quantitative polymerase chain reaction (qPCR) targeting key genes of interest provides a broad, quantitative measure across the microbial community. The purpose of this study was to compare findings obtained from the culture of cefotaxime-resistant (cefR) Escherichia coli with two qPCR methods for quantification of antibiotic resistance genes across wastewater, recycled water, and surface waters. The culture method was a modification of US EPA Method 1603 for E. coli, in which cefotaxime is included in the medium to capture cefR strains, while qPCR methods quantified sul1 and intI1. A common standard operating procedure for each target was applied to samples collected by six water utilities across the United States and processed by two laboratories. The methods performed consistently, and all three measures reflected the same overarching trends across water types. The qPCR detection of sul1 yielded the widest dynamic range of measurement as an AMR indicator (7-log versus 3.5-log for cefR E. coli), while intI1 was the most frequently detected target (99% versus 96.5% and 50.8% for sul1 and cefR E. coli, respectively). All methods produced comparable measurements between labs (p < 0.05, Kruskal-Wallis). Further study is needed to consider how relevant each measure is to capturing hot spots for the evolution and dissemination of AMR in the environment and as indicators of AMR-associated human health risk.

2.
Curr Environ Health Rep ; 10(2): 154-171, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36821031

RESUMO

PURPOSE OF REVIEW: Mounting evidence indicates that habitats such as wastewater and environmental waters are pathways for the spread of antibiotic-resistant bacteria (ARB) and mobile antibiotic resistance genes (ARGs). We identified antibiotic-resistant members of the genera Acinetobacter, Aeromonas, and Pseudomonas as key opportunistic pathogens that grow or persist in built (e.g., wastewater) or natural aquatic environments. Effective methods for monitoring these ARB in the environment are needed to understand their influence on dissemination of ARB and ARGs, but standard methods have not been developed. This systematic review considers peer-reviewed papers where the ARB above were cultured from wastewater or surface water, focusing on the accuracy of current methodologies. RECENT FINDINGS: Recent studies suggest that many clinically important ARGs were originally acquired from environmental microorganisms. Acinetobacter, Aeromonas, and Pseudomonas species are of interest because their ability to persist and grow in the environment provides opportunities to engage in horizontal gene transfer with other environmental bacteria. Pathogenic strains of these organisms resistant to multiple, clinically relevant drug classes have been identified as an urgent threat. However, culture methods for these bacteria were generally developed for clinical samples and are not well-vetted for environmental samples. The search criteria yielded 60 peer-reviewed articles over the past 20 years, which reported a wide variety of methods for isolation, confirmation, and antibiotic resistance assays. Based on a systematic comparison of the reported methods, we suggest a path forward for standardizing methodologies for monitoring antibiotic resistant strains of these bacteria in water environments.


Assuntos
Aeromonas , Águas Residuárias , Humanos , Genes Bacterianos , Aeromonas/genética , Pseudomonas/genética , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos/farmacologia
3.
Water Res X ; 17: 100161, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36466738

RESUMO

Antibiotic resistance is a major 21st century One Health (humans, animals, environment) challenge whose spread limits options to treat bacterial infections. There is growing interest in monitoring water environments, including surface water and wastewater, which have been identified as key recipients, pathways, and sources of antibiotic resistant bacteria (ARB). Aquatic environments also facilitate the transmission and amplification of ARB. Enterococcus spp. often carry clinically-important antibiotic resistance genes and are of interest as environmental monitoring targets. Enterococcus spp. are Gram-positive bacteria that are typically of fecal origin; however, they are also found in relevant environmental niches, with various species and strains that are opportunistic human pathogens. Although the value of environmental monitoring of antibiotic-resistant Enterococcus has been recognized by both national and international organizations, lack of procedural standardization has hindered generation of comparable data needed to implement integrated surveillance programs. Here we provide a comprehensive methodological review to assess the techniques used for the culturing and characterization of antibiotic-resistant Enterococcus across water matrices for the purpose of environmental monitoring. We analyzed 117 peer-reviewed articles from 33 countries across six continents. The goal of this review is to provide a critical analysis of (i) the various methods applied globally for isolation, confirmation, and speciation of Enterococcus isolates, (ii) the different methods for profiling antibiotic resistance among enterococci, and (iii) the current prevalence of resistance to clinically-relevant antibiotics among Enterococcus spp. isolated from various environments. Finally, we provide advice regarding a path forward for standardizing culturing of Enterococcus spp. for the purpose of antibiotic resistance monitoring in wastewater and wastewater-influenced waters within a global surveillance framework.

4.
Environ Sci Technol ; 56(13): 9149-9160, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35732277

RESUMO

Antimicrobial resistance (AMR) is a grand societal challenge with important dimensions in the water environment that contribute to its evolution and spread. Environmental monitoring could provide vital information for mitigating the spread of AMR; this includes assessing antibiotic resistance genes (ARGs) circulating among human populations, identifying key hotspots for evolution and dissemination of resistance, informing epidemiological and human health risk assessment models, and quantifying removal efficiencies by domestic wastewater infrastructure. However, standardized methods for monitoring AMR in the water environment will be vital to producing the comparable data sets needed to address such questions. Here we sought to establish scientific consensus on a framework for such standardization, evaluating the state of the science and practice of AMR monitoring of wastewater, recycled water, and surface water, through a literature review, survey, and workshop leveraging the expertise of academic, governmental, consulting, and water utility professionals.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Humanos , Controle de Qualidade , Águas Residuárias , Água
5.
Water Res ; 194: 116907, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33610927

RESUMO

The emergence of next generation sequencing (NGS) is revolutionizing the potential to address complex microbiological challenges in the water industry. NGS technologies can provide holistic insight into microbial communities and their functional capacities in water and wastewater systems, thus eliminating the need to develop a new assay for each target organism or gene. However, several barriers have hampered wide-scale adoption of NGS by the water industry, including cost, need for specialized expertise and equipment, challenges with data analysis and interpretation, lack of standardized methods, and the rapid pace of development of new technologies. In this critical review, we provide an overview of the current state of the science of NGS technologies as they apply to water, wastewater, and recycled water. In addition, a systematic literature review was conducted in which we identified over 600 peer-reviewed journal articles on this topic and summarized their contributions to six key areas relevant to the water and wastewater fields: taxonomic classification and pathogen detection, functional and catabolic gene characterization, antimicrobial resistance (AMR) profiling, bacterial toxicity characterization, Cyanobacteria and harmful algal bloom identification, and virus characterization. For each application, we have presented key trends, noteworthy advancements, and proposed future directions. Finally, key needs to advance NGS technologies for broader application in water and wastewater fields are assessed.


Assuntos
Cianobactérias , Sequenciamento de Nucleotídeos em Larga Escala , Cianobactérias/genética , Proliferação Nociva de Algas , Águas Residuárias , Água
6.
Artigo em Inglês | MEDLINE | ID: mdl-33142796

RESUMO

Ambient recreational waters can act as both recipients and natural reservoirs for antimicrobial resistant (AMR) bacteria and antimicrobial resistant genes (ARGs), where they may persist and replicate. Contact with AMR bacteria and ARGs potentially puts recreators at risk, which can thus decrease their ability to fight infections. A variety of point and nonpoint sources, including contaminated wastewater effluents, runoff from animal feeding operations, and sewer overflow events, can contribute to environmental loading of AMR bacteria and ARGs. The overall goal of this article is to provide the state of the science related to recreational exposure and AMR, which has been an area of increasing interest. Specific objectives of the review include (1) a description of potential sources of antibiotics, AMR bacteria, and ARGs in recreational waters, as documented in the available literature; (2) a discussion of what is known about human recreational exposures to AMR bacteria and ARGs, using findings from health studies and exposure assessments; and (3) identification of knowledge gaps and future research needs. To better understand the dynamics related to AMR and associated recreational water risks, future research should focus on source contribution, fate and transport-across treatment and in the environment; human health risk assessment; and standardized methods.


Assuntos
Antibacterianos , Bactérias , Águas Residuárias , Animais , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Humanos , Recreação , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA