Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Hazard Mater ; 465: 133218, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38113738

RESUMO

Laboratory studies show detrimental effects of metallic pollutants on invertebrate behaviour and cognition, even at low levels. Here we report a field study on Western honey bees exposed to metal and metalloid pollution through dusts, food and water at a historic mining site. We analysed more than 1000 bees from five apiaries along a gradient of contamination within 11 km of a former gold mine in Southern France. Bees collected close to the mine exhibited olfactory learning performances lower by 36% and heads smaller by 4%. Three-dimensional scans of bee brains showed that the olfactory centres of insects sampled close to the mine were also 4% smaller, indicating neurodevelopmental issues. Our study raises serious concerns about the health of honey bee populations in areas polluted with potentially harmful elements, particularly with arsenic, and illustrates how standard cognitive tests can be used for risk assessment.


Assuntos
Poluentes Ambientais , Poluição Ambiental , Abelhas , Animais , Exposição Ambiental , Cognição , Poluentes Ambientais/análise , Encéfalo
2.
PLoS Comput Biol ; 19(10): e1011529, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37782674

RESUMO

Analysing large numbers of brain samples can reveal minor, but statistically and biologically relevant variations in brain morphology that provide critical insights into animal behaviour, ecology and evolution. So far, however, such analyses have required extensive manual effort, which considerably limits the scope for comparative research. Here we used micro-CT imaging and deep learning to perform automated analyses of 3D image data from 187 honey bee and bumblebee brains. We revealed strong inter-individual variations in total brain size that are consistent across colonies and species, and may underpin behavioural variability central to complex social organisations. In addition, the bumblebee dataset showed a significant level of lateralization in optic and antennal lobes, providing a potential explanation for reported variations in visual and olfactory learning. Our fast, robust and user-friendly approach holds considerable promises for carrying out large-scale quantitative neuroanatomical comparisons across a wider range of animals. Ultimately, this will help address fundamental unresolved questions related to the evolution of animal brains and cognition.


Assuntos
Aprendizado Profundo , Abelhas , Animais , Microtomografia por Raio-X , Tamanho do Órgão , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Cognição
3.
Am Nat ; 201(5): 725-740, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37130232

RESUMO

AbstractAnimals regulate their food intake to maximize the expression of fitness traits but are forced to trade off the optimal expression of some fitness traits because of differences in the nutrient requirements of each trait ("nutritional trade-offs"). Nutritional trade-offs have been experimentally uncovered using the geometric framework for nutrition (GF). However, current analytical methods to measure such responses rely on either visual inspection or complex models of vector calculations applied to multidimensional performance landscapes, making these approaches subjective or conceptually difficult, computationally expensive, and, in some cases, inaccurate. Here, we present a simple trigonometric model to measure nutritional trade-offs in multidimensional landscapes (nutrigonometry) that relies on the trigonometric relationships of right-angle triangles and thus is both conceptually and computationally easier to understand and use than previous quantitative approaches. We applied nutrigonometry to a landmark GF data set for comparison of several standard statistical models to assess model performance in finding regions in the performance landscapes. This revealed that polynomial (Bayesian) regressions can be used for precise and accurate predictions of peaks and valleys in performance landscapes, irrespective of the underlying structure of the data (i.e., individual food intakes vs. fixed diet ratios). We then identified the known nutritional trade-off between life span and reproductive rate in terms of both nutrient balance and concentration for validation of the model. This showed that nutrigonometry enables a fast, reliable, and reproducible quantification of nutritional trade-offs in multidimensional performance landscapes, thereby broadening the potential for future developments in comparative research on the evolution of animal nutrition.


Assuntos
Longevidade , Reprodução , Animais , Teorema de Bayes , Reprodução/fisiologia , Meio Ambiente , Nutrientes
4.
Insects ; 14(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37103179

RESUMO

Pollinator declines have raised major concerns for the maintenance of biodiversity and food security, calling for a better understanding of environmental factors that affect their health. Here we used hemolymph analysis to monitor the health status of Western honey bees Apis mellifera. We evaluated the intraspecific proteomic variations and key biological activities of the hemolymph of bees collected from four Egyptian localities characterized by different food diversities and abundances. Overall, the lowest protein concentrations and the weakest biological activities (cytotoxicity, antimicrobial and antioxidant properties) were recorded in the hemolymph of bees artificially fed sucrose solution and no pollen. By contrast, the highest protein concentrations and biological activities were recorded in bees that had the opportunity to feed on various natural resources. While future studies should expand comparisons to honey bee populations exposed to more different diets and localities, our results suggest hemolymph samples can be used as reliable indicators of bee nutrition.

5.
PLoS Comput Biol ; 19(3): e1010558, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36961828

RESUMO

Understanding how pollinators move across space is key to understanding plant mating patterns. Bees are typically assumed to search for flowers randomly or using simple movement rules, so that the probability of discovering a flower should primarily depend on its distance to the nest. However, experimental work shows this is not always the case. Here, we explored the influence of flower size and density on their probability of being discovered by bees by developing a movement model of central place foraging bees, based on experimental data collected on bumblebees. Our model produces realistic bee trajectories by taking into account the autocorrelation of the bee's angular speed, the attraction to the nest (homing), and a gaussian noise. Simulations revealed a « masking effect ¼ that reduces the detection of flowers close to another, with potential far reaching consequences on plant-pollinator interactions. At the plant level, flowers distant to the nest were more often discovered by bees in low density environments. At the bee colony level, foragers found more flowers when they were small and at medium densities. Our results indicate that the processes of search and discovery of resources are potentially more complex than usually assumed, and question the importance of resource distribution and abundance on bee foraging success and plant pollination.


Assuntos
Flores , Mascaramento Perceptivo , Abelhas , Animais , Polinização , Plantas , Movimento
6.
Insect Sci ; 30(6): 1734-1748, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36734172

RESUMO

Recent developments allowed establishing virtual-reality (VR) setups to study multiple aspects of visual learning in honey bees under controlled experimental conditions. Here, we adopted a VR environment to investigate the visual learning in the buff-tailed bumble bee Bombus terrestris. Based on responses to appetitive and aversive reinforcements used for conditioning, we show that bumble bees had the proper appetitive motivation to engage in the VR experiments and that they learned efficiently elemental color discriminations. In doing so, they reduced the latency to make a choice, increased the proportion of direct paths toward the virtual stimuli and walked faster toward them. Performance in a short-term retention test showed that bumble bees chose and fixated longer on the correct stimulus in the absence of reinforcement. Body size and weight, although variable across individuals, did not affect cognitive performances and had a mild impact on motor performances. Overall, we show that bumble bees are suitable experimental subjects for experiments on visual learning under VR conditions, which opens important perspectives for invasive studies on the neural and molecular bases of such learning given the robustness of these insects and the accessibility of their brain.


Assuntos
Encéfalo , Realidade Virtual , Abelhas , Animais , Cabeça
7.
J Exp Biol ; 225(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35726829

RESUMO

Pollinators are exposed to numerous parasites and pathogens when foraging on flowers. These biological stressors may affect critical cognitive abilities required for foraging. Here, we tested whether exposure to Nosema ceranae, one of the most widespread parasites of honey bees also found in wild pollinators, impacts cognition in bumblebees. We investigated different forms of olfactory learning and memory using conditioning of the proboscis extension reflex. Seven days after being exposed to parasite spores, bumblebees showed lower performance in absolute, differential and reversal learning than controls. The consistent observations across different types of olfactory learning indicate a general negative effect of N. ceranae exposure that did not specifically target particular brain areas or neural processes. We discuss the potential mechanisms by which N. ceranae impairs bumblebee cognition and the broader consequences for populations of pollinators.


Assuntos
Nosema , Parasitos , Animais , Abelhas/parasitologia , Aprendizagem , Memória , Nosema/patogenicidade , Parasitos/patogenicidade , Olfato
8.
Chemosphere ; 297: 134089, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35240159

RESUMO

Whether animals can actively avoid food contaminated with harmful compounds through taste is key to assess their ecotoxicological risks. Here, we investigated the ability of honey bees to perceive and avoid food resources contaminated with common metal pollutants known to impair behaviour at low concentrations. In laboratory assays, bees did not discriminate food contaminated with arsenic, lead or zinc and ingested it readily, up to estimated doses of 929.1 µg g-1 As, 6.45 mg g-1 Pb and 72.46 mg g-1 Zn. A decrease of intake and appetitive responses indicating metal detection was only observed at the highest concentrations of lead (3.6 mM) and zinc (122.3 mM) through contact with the antennae and the proboscis. Electrophysiological analyses confirmed that only high concentrations of the three metals in a sucrose solution induced a consistently reduced neural response to sucrose in antennal taste receptors (As: >0.1 µM, Pb: >1 mM; Zn: >100 mM). Overall, cellular and behavioural responses did not provide evidence for specific mechanisms that would support selective detection of toxic metals (arsenic, lead), as compared to zinc, which has important biological functions. Our results thus show that honey bees can avoid metal pollutants in their food only at high concentrations unlikely to be encountered in the environment. By contrast, they appear to be unable to detect low, yet harmful, concentrations found in flowers. Metal pollution at trace levels is therefore a major threat for pollinators.


Assuntos
Arsênio , Poluentes Ambientais , Animais , Abelhas , Poluentes Ambientais/toxicidade , Chumbo , Sacarose , Zinco
9.
Sensors (Basel) ; 21(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34884145

RESUMO

The automated quantification of the behaviour of freely moving animals is increasingly needed in applied ethology. State-of-the-art approaches often require tags to identify animals, high computational power for data collection and processing, and are sensitive to environmental conditions, which limits their large-scale utilization, for instance in genetic selection programs of animal breeding. Here we introduce a new automated tracking system based on millimetre-wave radars for real time robust and high precision monitoring of untagged animals. In contrast to conventional video tracking systems, radar tracking requires low processing power, is independent on light variations and has more accurate estimations of animal positions due to a lower misdetection rate. To validate our approach, we monitored the movements of 58 sheep in a standard indoor behavioural test used for assessing social motivation. We derived new estimators from the radar data that can be used to improve the behavioural phenotyping of the sheep. We then showed how radars can be used for movement tracking at larger spatial scales, in the field, by adjusting operating frequency and radiated electromagnetic power. Millimetre-wave radars thus hold considerable promises precision farming through high-throughput recording of the behaviour of untagged animals in different types of environments.


Assuntos
Movimento , Radar , Agricultura , Animais , Coleta de Dados , Monitorização Fisiológica , Ovinos
10.
Sci Rep ; 11(1): 16220, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376777

RESUMO

Animals have evolved cognitive abilities whose impairment can incur dramatic fitness costs. While malnutrition is known to impact brain development and cognitive functions in vertebrates, little is known in insects whose small brain appears particularly vulnerable to environmental stressors. Here, we investigated the influence of diet quality on learning and memory in the parasitoid wasp Venturia canescens. Newly emerged adults were exposed for 24 h to either honey, 20% sucrose solution, 10% sucrose solution, or water, before being conditioned in an olfactory associative learning task in which an odor was associated to a host larvae (reward). Honey fed wasps showed 3.5 times higher learning performances and 1.5 times longer memory retention than wasps fed sucrose solutions or water. Poor diets also reduced longevity and fecundity. Our results demonstrate the importance of early adult nutrition for optimal cognitive function in these parasitoid wasps that must quickly develop long-term olfactory memories for searching suitable hosts for their progeny.


Assuntos
Comportamento Alimentar , Larva/fisiologia , Deficiências da Aprendizagem/patologia , Desnutrição/complicações , Transtornos da Memória/patologia , Vespas/fisiologia , Animais , Deficiências da Aprendizagem/etiologia , Transtornos da Memória/etiologia
11.
PLoS Comput Biol ; 17(7): e1009260, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34319987

RESUMO

Central place foraging pollinators tend to develop multi-destination routes (traplines) to exploit patchily distributed plant resources. While the formation of traplines by individual pollinators has been studied in detail, how populations of foragers use resources in a common area is an open question, difficult to address experimentally. We explored conditions for the emergence of resource partitioning among traplining bees using agent-based models built from experimental data of bumblebees foraging on artificial flowers. In the models, bees learn to develop routes as a consequence of feedback loops that change their probabilities of moving between flowers. While a positive reinforcement of movements leading to rewarding flowers is sufficient for the emergence of resource partitioning when flowers are evenly distributed, the addition of a negative reinforcement of movements leading to unrewarding flowers is necessary when flowers are patchily distributed. In environments with more complex spatial structures, the negative experiences of individual bees on flowers favour spatial segregation and efficient collective foraging. Our study fills a major gap in modelling pollinator behaviour and constitutes a unique tool to guide future experimental programs.


Assuntos
Abelhas/fisiologia , Modelos Biológicos , Animais , Comportamento Animal/fisiologia , Biologia Computacional , Simulação por Computador , Comportamento Alimentar/fisiologia , Voo Animal/fisiologia , Flores , Aprendizagem/fisiologia , Polinização , Reforço Psicológico , Análise de Sistemas
12.
J Exp Biol ; 224(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34002230

RESUMO

Environmental pollutants can exert sublethal deleterious effects on animals. These include disruption of cognitive functions underlying crucial behaviours. While agrochemicals have been identified as a major threat to pollinators, metal pollutants, which are often found in complex mixtures, have so far been overlooked. Here, we assessed the impact of acute exposure to field-realistic concentrations of three common metal pollutants, lead, copper and arsenic, and their combinations, on honey bee appetitive learning and memory. All treatments involving single metals slowed down learning and disrupted memory retrieval at 24 h. Combinations of these metals had additive negative effects on both processes, suggesting common pathways of toxicity. Our results highlight the need to further assess the risks of metal pollution on invertebrates.


Assuntos
Poluentes Ambientais , Animais , Abelhas , Cognição , Poluentes Ambientais/toxicidade , Poluição Ambiental , Aprendizagem
13.
Sci Total Environ ; 779: 146398, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34030224

RESUMO

The current decline of invertebrates worldwide is alarming. Several potential causes have been proposed but metal pollutants, while being widespread in the air, soils and water, have so far been largely overlooked. Here, we reviewed the results of 527 observations of the effects of arsenic, cadmium, lead and mercury on terrestrial invertebrates. These four well-studied metals are considered as priorities for public health and for which international regulatory guidelines exist. We found that they all significantly impact the physiology and behavior of invertebrates, even at levels below those recommended as 'safe' for humans. Our results call for a revision of the regulatory thresholds to better protect terrestrial invertebrates, which appear to be more sensitive to metal pollution than vertebrates. More fundamental research on a broader range of compounds and species is needed to improve international guidelines for metal pollutants, and to develop conservation plans to protect invertebrates and ecosystem services.


Assuntos
Arsênio , Poluentes Ambientais , Metais Pesados , Animais , Ecossistema , Monitoramento Ambiental , Humanos , Invertebrados , Metais/toxicidade , Metais Pesados/análise
15.
Ecotoxicol Environ Saf ; 212: 112008, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33578129

RESUMO

Pollutants can have severe detrimental effects on insects, even at sublethal doses, damaging developmental and cognitive processes involved in crucial behaviours. Agrochemicals have been identified as important causes of pollinator declines, but the impacts of other anthropogenic compounds, such as metallic trace elements in soils and waters, have received considerably less attention. Here, we exposed colonies of the European honey bee Apis mellifera to chronic field-realistic concentrations of lead in food and demonstrated that consumption of this trace element impaired bee cognition and morphological development. Honey bees exposed to the highest of these low concentrations had reduced olfactory learning performances. These honey bees also developed smaller heads, which may have constrained their cognitive functions as we show a general relationship between head size and learning performance. Our results demonstrate that lead pollutants, even at trace levels, can have dramatic effects on honey bee cognitive abilities, potentially altering key colony functions and the pollination service.


Assuntos
Abelhas/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Chumbo/toxicidade , Reversão de Aprendizagem/efeitos dos fármacos , Animais , Abelhas/fisiologia , Cefalometria , Cognição/efeitos dos fármacos , Relação Dose-Resposta a Droga , Cabeça/anatomia & histologia , Polinização
16.
Microorganisms ; 9(1)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445614

RESUMO

Parasites alter the physiology and behaviour of their hosts. In domestic honey bees, the microsporidia Nosema ceranae induces energetic stress that impairs the behaviour of foragers, potentially leading to colony collapse. Whether this parasite similarly affects wild pollinators is little understood because of the low success rates of experimental infection protocols. Here, we present a new approach for infecting bumblebees (Bombus terrestris) with controlled amounts of N. ceranae by briefly exposing individual bumblebees to parasite spores before feeding them with artificial diets. We validated our protocol by testing the effect of two spore dosages and two diets varying in their protein to carbohydrate ratio on the prevalence of the parasite (proportion of PCR-positive bumblebees), the intensity of parasites (spore count in the gut and the faeces), and the survival of bumblebees. Overall, insects fed a low-protein, high-carbohydrate diet showed the highest parasite prevalence (up to 70%) but lived the longest, suggesting that immunity and survival are maximised at different protein to carbohydrate ratios. Spore dosage did not affect parasite infection rate and host survival. The identification of experimental conditions for successfully infecting bumblebees with N. ceranae in the lab will facilitate future investigations of the sub-lethal effects of this parasite on the behaviour and cognition of wild pollinators.

18.
Insects ; 11(9)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854218

RESUMO

Insects have evolved an extraordinary range of nutritional adaptations to exploit other animals, plants, bacteria, fungi and soils as resources in terrestrial and aquatic environments. This special issue provides some new insights into the mechanisms underlying these adaptations. Contributions comprise lab and field studies investigating the chemical, physiological, cognitive and behavioral mechanisms that enable resource exploitation and nutrient intake regulation in insects. The collection of papers highlights the need for more studies on the comparative sensory ecology, underlying nutritional quality assessment, cue perception and decision making to fully understand how insects adjust resource selection and exploitation in response to environmental heterogeneity and variability.

19.
Insects ; 11(4)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283710

RESUMO

Achieving a better understanding of the consequences of nutrition to animal fitness and human health is a major challenge of our century. Nutritional ecology studies increasingly use nutritional landscapes to map the complex interacting effects of nutrient intake on animal performances, in a wide range of species and ecological contexts. Here, we argue that opening access to these hard-to-obtain, yet considerably insightful, data is fundamental to develop a comparative framework for nutrition research and offer new quantitative means to address open questions about the ecology and evolution of nutritional processes.

20.
Curr Zool ; 65(4): 437-446, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31413716

RESUMO

Animals have evolved foraging strategies to acquire blends of nutrients that maximize fitness traits. In social insects, nutrient regulation is complicated by the fact that few individuals, the foragers, must address the divergent nutritional needs of all colony members simultaneously, including other workers, the reproductives, and the brood. Here we used 3D nutritional geometry design to examine how bumblebee workers regulate their collection of 3 major macronutrients in the presence and absence of brood. We provided small colonies artificial nectars (liquid diets) and pollens (solid diets) varying in their compositions of proteins, lipids, and carbohydrates during 2 weeks. Colonies given a choice between nutritionally complementary diets self-selected foods to reach a target ratio of 71% proteins, 6% carbohydrates, and 23% lipids, irrespective of the presence of brood. When confined to a single nutritionally imbalanced solid diet, colonies without brood regulated lipid collection and over-collected protein relative to this target ratio, whereas colonies with brood regulated both lipid and protein collection. This brood effect on the regulation of nutrient collection by workers suggests that protein levels are critical for larval development. Our results highlight the importance of considering bee nutrition as a multidimensional phenomenon to better assess the effects of environmental impoverishment and malnutrition on population declines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA